Самодельный солнечный коллектор: Самодельный солнечный коллектор для нагрева воды: фото изготовления

Содержание

Солнечный коллектор своими руками: принцип сборки

Оглавление:
Устройство и принцип работы солнечного коллектора
Солнечный коллектор своими руками: как и из чего изготовить

Дороговизна традиционных энергоносителей, используемых в быту, заставляет человека двигаться дальше и искать новые источники энергии, которые в полной мере могли бы заменить существующие. Наиболее часто используемой альтернативной энергией является солнечная – ее человек уже достаточно эффективно научился использовать в разных направлениях. Об одном из таких направлений пойдет речь в этой статье, в которой вместе с сайтом stroisovety.org мы рассмотрим вопрос нагрева воды с помощью солнечной энергии и поговорим о том, как сделать солнечный коллектор своими руками.

Солнечные коллекторы для отопления фото

Устройство и принцип работы солнечного коллектора

Чтобы понимать, с чем придется столкнуться на пути изготовления солнечного водонагревателя, для начала необходимо разобраться с его конструкцией и принципом работы.

Как ни странно, но солнечный коллектор для нагрева воды устроен достаточно просто – в его принцип работы заложены элементарные законы физики, согласно которым жидкость с большей плотностью вытесняет менее плотную жидкость.

По сути, такой же принцип работы заложен в работу системы отопления с естественной циркуляцией теплоносителя – горячая вода поднимается вверх, а холодная помогает ей в этом. Разница между таким отоплением и солнечным коллектором заключается исключительно в способе нагрева жидкости, в нашем случае – воды, которая просто нагревается на солнце.

Солнечный коллектор для нагрева воды фото

Итак, исходя из этого принципа вырисовывается и самая оптимальная конструкция солнечного водонагревателя – по сути, это вертикально расположенный змеевик, вода в котором по мере нагревания поднимается в его верхнюю точку, после чего благополучно поступает в накопительный резервуар, из которого осуществляется забор жидкости.

Следует понимать, что для эффективной работы самодельный солнечный коллектор необходимо обеспечить естественной циркуляцией жидкости – остывшая или не до конца нагревшаяся вода с накопительного бака должна поступать в коллектор, из которого после очередного цикла подогрева возвращаться в накопительный резервуар, требующего, кстати, хорошего утепления.

Плоский солнечный коллектор фото

Исходя из выше изложенного, формируется и принцип установки различных узлов альтернативного солнечного обогревателя. Чтобы обеспечить жизненно важную циркуляцию жидкости, не прибегая к помощи насоса, установка солнечного коллектора выполняется в самом высоком месте (как правило, на крыше), а монтаж накопительного резервуара ниже него (например, на чердаке).

Такое устройство, установленное на доме и изготовленное в заводских условиях с применением современных технологий, способно не только обеспечить небольшой домик горячей водой, но и теплом. Да, солнечный коллектор даже зимой работает не только в системе водоснабжения, но и в системе отопления. Но это заводской коллектор, изготовленный из вакуумных трубок и практически не имеющий теплопотерь. А самодельный солнечный коллектор для дома реально справится только с обеспечением горячей воды, и то лишь в ясный солнечный день. Но даже это неплохо и позволяет сэкономить немало дорогостоящих природных ресурсов.

Солнечные коллекторы для дома фото

Солнечный коллектор своими руками: как и из чего изготовить

Для начала разберемся с основанием для солнечного коллектора – наиболее простым решением будет собрать его на большом листе толстого пластика. Можно использовать и материал типа ОСБ-3, но его придется капитально защитить от атмосферной влаги. Но даже с учетом таких мер предосторожности обеспечить долгий срок эксплуатации основания не получится, поскольку дерево есть дерево. Поэтому пластик будет именно тем материалом, который, как говорится, прописал доктор – легкий, прочный и долговечный.

Основание для солнечного коллектора должно притягивать солнечный цвет, а не отражать. В этом отношении лучшим вариантом будет его черная окраска. С этим, я думаю, у вас проблем не возникнет.

Солнечный коллектор своими руками фото

Теперь о самом коллекторе. В идеале его необходимо изготовить из прозрачного материала – трубки из стекла или прозрачного пластика будут наиболее рациональным решением.

В принципе, их можно заменить обыкновенной металлопластиковой трубой, окрашенной в черный цвет – этот материал для коллектора достаточно легко уложить и закрепить на основании.

Здесь следует принимать во внимание один нюанс – площадь обогрева. Трубки придется укладывать как можно плотнее друг к другу. Если вы думаете, что ее легко изогнуть под малым радиусом закругления, вы ошибаетесь. Придется использовать массу соединительных угловых фитингов. Закрепить трубу на пластиковое основание можно с помощью клипс, предназначенных для ее монтажа. На краях коллектора необходимо установить концевые фитинги – к верхнему краю через тройник привинчивается сбросник для воздуха (можно автоматический) а к нижнему – посредством отдельной трубы подключается накопительный резервуар.

Самодельный солнечный коллектор фото

Вот мы добрались и до теплозащищенного накопительного бака. Пожалуй, здесь ни у кого не возникнет вопросов, из чего его сделать. Вы правы, нам нужен электрический водонагреватель. Именно его можно будет зимой использовать по назначению, а летом, когда много солнечных дней, применять в качестве хранилища нагретой солнечными лучами воды. Так что не спешите его разбирать и удалять всю начинку.

Теперь о его подключении. Для начала подсоедините бак к системе существующего водопровода положенным для него способом. Потом к патрубку холодного водопровода через тройник и отсекающий кран подсоедините низ солнечного коллектора. Точно так же, только к верхнему концевому фитингу, необходимо подсоединить через тройник и кран патрубок горячего водопровода.

Как собрать солнечный коллектор своими руками фото

Вот, в принципе, и все. Осталось только разобраться, как вся эта система работает и как ею управлять. Это не так уж и сложно, как вам кажется. Вместо привычных двух отсекающих кранов в нашей ситуации имеется четыре – с их помощью и будем переключать систему в зимний и летний режим работы. Для лета необходимо открыть все четыре крана и отключить подачу электроэнергии.

Для зимы краны, обеспечивающие циркуляцию воды через плоский солнечный коллектор, нужно закрыть и включить подачу электроэнергии на водонагревательный бак.

Как видите, все просто, но необходимо помнить, что при переходе на зимний период воду с коллектора нужно слить – иначе она замерзнет, и все ваши труды пойдут насмарку.

Как работает солнечный коллектор зимой

Именно так собирается солнечный коллектор своими руками. Конечно, его эффективность не идет ни в какое сравнение с производительностью заводского агрегата, в котором для нагрева воды используются вакуумные трубки, но все же он в состоянии сэкономить изрядную часть семейного бюджета.

Автор статьи Александр Куликов

Самодельный солнечный водонагреватель своими руками для дома: схема, принцип работы

Солнце является мощным и бесконечным источником тепловой энергии для нашей планеты. Она достается нам абсолютно бесплатно, отсюда и возникла идея использовать ее для потребностей человека. Другое дело, что устройства – преобразователи солнечного излучения в тепло нынче достаточно дороги. Даже небольшой солнечный коллектор заводского изготовления стоит приличных денег. Зато собственноручно смастерить самодельный солнечный водонагреватель может любой желающий, а как это сделать, будет рассказано в этой статье.

Принципе действия водонагревателя

Чтобы взяться за дело с пониманием вопроса, следует вначале разобраться, в чем заключается принцип работы солнечного водонагревателя. В качестве примера лучше всего взять заводской аппарат, который в состоянии подогревать воду даже в зимнее время, хотя в гораздо меньших объемах, нежели летом.

Устройство представляет собой батарею, собранную из множества отдельных элементов в виде стеклянных трубок.Внутри каждой трубки, изготавливаемой из кварцевого стекла, располагается еще одна, окрашенная в черный цвет и наполненная веществом, что испаряется при низких температурах.

С целью не допустить потерь тепла изнутри, а также избежать воздействия окружающей среды снаружи, из пространства между трубками удален воздух.

Концы всех элементов входят в горизонтальный коллектор, где протекает нагреваемая вода. Подобные вакуумные трубки для водонагревателя весьма эффективно поглощают солнечное тепло и передают его воде за счет испарения / конденсации вещества (рабочего тела).

Система функционирует следующим образом:

  • под воздействием солнечных лучей рабочее тело превращается в пар и поднимается в верхнюю часть стеклянной колбы;
  • контактируя сквозь стенки с потоком воды, вещество отдает ему тепловую энергию и возвращается в жидкое агрегатное состояние;
  • подчиняясь силе тяжести, рабочее тело стекает в нижнюю часть, где цикл начинается заново;
  • обычно солнечные водонагреватели, находящиеся на крыше, присоединяются к дополнительному змеевику бойлера косвенного нагрева. Таким способом осуществляется передача теплоты домашней отопительной сети.

Примечание. Вакуумные трубки изготавливаются из кварцевого стекла, которое, в отличие от обычного, пропускает волны ультрафиолетового диапазона. Это позволяет поглощать энергию солнца во время облачности и в холодный период года.

Как нетрудно догадаться, соорудить подобную конструкцию в домашних условиях невозможно. Приведем более удачный пример: безнапорный водонагреватель, где происходит передача тепла напрямую, без посредника. В прямоугольный корпус с хорошо утепленной задней стенкой помещен змеевик из меди, подключенный к накопительному баку. В контуре естественным образом циркулирует вода, нагреваясь от солнца напрямую, вследствие чего температура в накопительной емкости постепенно возрастает.

Трубка змеевика запрессована в металлическую пластину – теплоприемник темного цвета, от воздействия осадков она защищена прочным стеклом. Данный солнечный накопительный водонагреватель не так дорог, как вакуумный, но и менее эффективен. Он хорошо действует только в солнечную безоблачную погоду. Зато его конструкция проще и может быть реализована в домашних условиях.

 

Для справки. Существует еще один способ воспользоваться энергией солнца – установить обычный водонагреватель на солнечных батареях, вырабатывающих электричество. Но такая система очень дорога, хотя может функционировать круглогодично.

Выбор материалов

Итак, определившись с концепцией будущего солнечного нагревателя для воды, перейдем к подбору материалов для теплообменника. Тут есть из чего выбирать, нагревательный контур можно сделать из:

  • медной трубки – идеальный вариант;
  • черных полимерных труб;
  • секций плоских стальных радиаторов;
  • алюминиевых трубок.

Примечание. Мастера – умельцы, давно воплотившие идею в жизнь у себя дома, применяли в качестве нагреваемого контура резиновый садовый шланг черного цвета или теплообменник от старого холодильника.

Сложнее всего определить теплообменную поверхность змеевика. Если вместо него взять стальные радиаторы, то долго думать не придется. Все равно больше 2 панелей в одном корпусе установить не получится, иначе конструкция будет слишком тяжелой. В остальных случаях солнечный водонагреватель, сделанный своими руками, надо рассчитывать экспериментальным путем. Солнечная активность в каждом регионе разная, также играет роль расположение дома и его ориентация в пространстве. Поэтому дать однозначные рекомендации о длине змеевика из такого-то материала затруднительно, ее надо определить индивидуально.

Для изготовления корпуса теплоприемника можно взять деревянные доски и лист фанеры, а вместо лицевой панели из стекла применить такой простой материал, как поликарбонат. Он прозрачен и достаточно прочен, разбить его не сможет даже сильный град.

Так что водонагреватель из поликарбоната выйдет ничем не хуже стеклянного. Что касается накопительного бака, то его можно смастерить из листового металла либо приобрести готовую пластмассовую или стальную емкость. Соединительные трубы проще всего поставить полимерные, например, из металлопластика.

Рекомендации по изготовлению

Для тех, кто предпочитает простые решения, есть вариант, давно придуманный нашими дедами. На крышу дома или отдельной душевой устанавливается один либо несколько баков, выкрашенных в черный цвет. Такой водонагреватель работает просто: теплая вода по вертикальной трубе из бочки течет прямо в душевую, стоит только открыть кран. Для заполнения емкости к ней прокладывается водопроводная магистраль. При хорошей солнечной активности в летнее время вода в бочке нагревается буквально за несколько часов.

Простой бак на крыше не сравнится с солнечным коллектором по эффективности, пусть даже и самодельным. Поэтому, определившись с размерами теплоприемника, надо изготовить корпус, куда потом следует поместить змеевик. Предпочтительнее его собрать из дерева, оно не так сильно пропускает тепло, как металл. Перед укладкой теплообменника заднюю стенку необходимо утеплить слоем пенопласта. Общая схема солнечного водонагревателя с накопительным и подпиточным резервуаром представлена на рисунке:

Просто собрать тепловой приемник своими руками – это еще не вся работа, нужно его правильно задействовать в системе водоснабжения. Показанная на схеме солнечная водонагревательная установка состоит из бака – аккумулятора, емкости подпитки и самого коллектора. Не стоит ставить лишнее насосное оборудование, надо позволить воде циркулировать естественным образом. Необходимо проследить, чтобы аккумулятор стоял немного выше теплоприемника, а подпиточная емкость – выше аккумулирующей.

Резервуар для горячей воды следует обязательно утеплить, для этого подойдет любой рулонный материал. Чтобы накопительный водонагреватель функционировал в автоматическом режиме, во втором бачке нужно поставить поплавковый клапан, реагирующий на снижение уровня жидкости. К патрубку клапана подводится труба от водопровода. Теперь во время расхода в основном резервуаре при помывке в его нижнюю зону будет подаваться холодная вода. Не забудьте предусмотреть вертикальный патрубок для выпуска воздуха, поднятый на необходимую высоту.

Заключение

Благодаря солнечной энергии в теплое время года ваш частный дом или дача может быть обеспечена горячей водой, за которую не придется платить. Затраты, что придется понести при изготовлении водонагревательной установки, минимальны: надо купить трубы, краны и прочие недостающие материалы. Вложения средств в самодельную систему несравнимы с ценой заводских солнечных коллекторов.

Солнечный коллектор своими руками: воздушный и плоский

Использование солнечной энергии для отопления дома хорошо всем, кроме того, что стоят эти системы очень уж недешево. Но многие системы при наличии хотя бы относительно «прямых» рук, желания, времени и некоторого количества денег, достаточно просто реализуются самостоятельно. Рассмотрим несколько вариантов тепловых коллекторов, сделанных умельцами своими руками.

Воздушный солнечный коллектор, сделанный своими руками

Воздушные коллекторы любой конструкции использовать как основное отопление не удастся: слишком низкая эффективность. А все потому, что теплоемкость воздуха во много раз меньше, чем воды. Но в качестве дополнительного источника тепла для снижения расходов за отопление — это вполне возможно.

Этот воздушный коллектор занимает всю южную стену. Благо, выходит она на задний двор и ничем не затенена. Скажем сразу: получилось неплохо по эффективности. При дневной температуре +2oC на выходе воздух был +65oC.

Итак, очищаем, ровняем, на всю поверхность стены прикрепляем черную плотную пленку (от 100 до 200 мк). Для лучшего эффекта можно под пленку теплоизоляцию набить, так будет нагрев еще более значительным. Но без изоляции стена будет служить теплоаккумулятором, так что можно и так.

Как сделать воздушный коллектор для отопления (для увеличения размера кликните по фото)

Вверху справа и слева делаем два отверстия, через которые будет происходить обмен воздуха. По контуру каждого из них набиваем бруски. Бруски (20*40 мм) крепим и по периметру стены, и на расстоянии примерно 80 см снизу и сверху поперек стены. По опыту эксплуатации можно уже сказать, что лучше поперечные промежуточные бруски не делать сплошными, а оставлять зазоры в 15-20 см. Получится своеобразный лабиринт. К нижним и верхним брускам крепим заглушки для выбранного профиля профнастила.

Теперь на собранную раму устанавливаем гофрированные листы, окрашенные в черный цвет. Цвет может стать проблемой — нет у нас в продаже такого. Но выйти из положения можно, покрасив поверхность черной термостойкой краской.

Для крепления листов профнастила и одновременно, для устройства лабиринта нужно в местах стыка листов прибивать вертикальные планки. Только они не должны доходить до поперечных перекладин. Так будет воздух свободнее двигаться и эффективность его нагрева повысится.

Это уже почти финал

Закрепив листы профнастила, все стыки хорошо нужно загерметизировать. С боков  заложить кусками пенополистирола, плотно забить щели чем-то, все это замазать герметиком. Тоже проделать внизу и вверху. С местами стыка листов все чуть проще: заполняем герметиком. Черный герметик, больше подходит по цвету, но это жаростойкий, дорогой. А те, что дешевле — красного цвета. Наверное, можно все залить силиконом, но в данном случае использован черный.

Теперь поверх профнастила набиваем каркас для стекла. Чем больше будет лист стекла, тем большую его толщину нужно брать. Это не очень хорошо с финансовой точки зрения. К тому же светопропускание у толстого стекла меньше. Потому решетку собираем под не очень большие  фрагменты стекол. Слишком маленькие куски — это тоже нехорошо: много стыков. Много стыков — значит, через них может утекать тепло, и к тому же швы отнимают полезную площадь, через которую попадает в наш воздушный коллектор солнце. Чтобы бруски не портили картину, и также служили общему делу собирания тепла, их красим в черный цвет.

На готовую и высохшую решетку крепим стекла (можно использовать прозрачный пластик, но нужно смотреть чтобы он хорошо пропускал свет). Нормальная толщина стекла 3-5 мм. Все стыки заделываем силиконовым герметиком. Герметик распределить ровно не получилось, потому все заклеено еще и черным скотчем. Хотя, наверное, зря. Зато получилось красиво. Осталось только собрать воздуховод. Сложного тут ничего нет: приделываете гофро-рукав или собираете конструкцию из жести, к ней крепите вентилятор. В этом варианте был использован канальный, а крепить его пришлось при помощи кусков от старой велосипедной камеры. Вот и все, воздушный коллектор для отопления своими руками собран.

Плоский солнечный коллектор из шланга

Каждый, наверное, замечал, что в оставленном на солнце шланге вода сильно нагревается. И это можно использовать для нагрева горячей воды. Летом таким образом можно нагревать воду в бассейне или для дома. Зимой, к сожалению, ничего не выйдет, но идея проста до неприличия.

Некоторые умудряются греть воду в черной трубе, скрученной змейкой делать (кликните по картинке чтобы увеличить ее размер)

Просто сворачиваете черный (обязательно) шланг в плоскую бухту, закрепляете его каким-то образом и устанавливаете на крыше. Некоторые умельцы умудряются разложить его просто на черепице, другие делают небольшие кассеты из тонкого листового металла или фанеры. Красят кассеты в черный цвет, а на них уже закрепляют шланг. Крепить можно любым доступным методом. Хоть одиночными фиксаторами, хоть ленточными, можно использовать металлическую ленту и саморезы. Крепеж любой, но надежный — система работает с насосом, так что давление будет серьезное.

Способы крепления труб для тех, кому такая идея понравилась (кликните по картинке чтобы увеличить ее размер)

Несколько этих кассет размещаете на крыше. Концы заводите на две гребенки: подающую, где будет течь холодная вода и отводящую, где собираться будет уже нагретая. На подающем трубопроводе установлен циркуляционный насос. С системой, кажется, все понятно. Вот только учтите, что воды в каждой такой кассете будет прилично: не перегрузите кровлю.

Подробнее о солнечных коллекторах и их видах читайте тут. Возможно, вас заинтересует статья о солнечных батареях.

Вот еще один вариант в видео- формате самодельного солнечного коллектора. Для отопления дома зимой его нужно будет усовершенствовать, но для весеннего или осеннего варианта этот неплохо работает.

Тепловой коллектор своими руками

Идей и разных модификаций самодельных солнечных коллекторов немало. Это еще одна из них. Чуть измененная версия представленного выше варианта. Тут на обширном листе толстой фанеры закреплены трубки. Фанера предварительно окрашена в черный цвет. Трубы негибкие, потому использованы фитинги, схема укладки — змейка. Времени на сборку пошло немало. Все дело в правильном подключении. Для использования с естественной циркуляцией контур слишком длинный, потому обязательна установка циркуляционного насоса.

Этот плоский коллектор требует терпения: соединение труб на фитингах

Возможно, вам будет интересно, как сделать солнечную батарею своими руками.

Итоги

Все эти самодельные солнечные коллекторы легки в изготовлении и не требуют больших затрат. Но все конструкции идеальны, но это  — рабочие модели. В каждом из них вы можете изменить то, что вам кажется неправильным, и потом с полным правом говорить, что эту модель солнечного коллектора вы не только сделали своими руками, но и сами ее усовершенствовали.

Самодельный солнечный коллектор

На чтение 5 мин. Просмотров 667

После полного окрашивания поглощающая панель коллектора приобрела вид.

Пятна на поверхности — это следы вспучившейся краски. Вспучивание произошло из-за того, что я заливал панель краской из разных баллончиков.

Одна краска была на алкидной основе, а вторая — которая с алкидной краской «не дружит». Но для процесса нагревания это вспучивание значения не имеет, поэтому я не стал его исправлять.

После окрашивания, к концам труб были тем же термоклеем приделаны уголки с резьбой.

Уголки с резьбой позволяют легко подключать и отключать коллектор при помощи гибких армированных шлангов.

После этого я решил провести серию испытаний, чтобы проверить, как коллектор будет держать давление и температуру. Пока результаты меня не очень радуют, но обо всем по порядку.

Для испытаний я просто ставил коллектор вертикально и подавал в него воду из водопровода через нижнюю трубу. Прозрачный полипропилен с обратной стороны позволяет контролировать процесс заполнения. Как только коллектор полностью заполнялся и вода начинала выливаться через верхнюю трубу, подача воды в коллектор прекращалась. Минус такого способа в том, что он создает более высокое давление воды внизу коллектора и практически нет давления вверху.

Первое заполнение коллектора водой показало, что в клеевом стыке труб и поликарбоната есть несколько протечек. Причем протечки обнаружились вверху, где давление было низкое. Отключаем панель, сливаем воду, сушим, устраняем точки протечки.

Второе подключение — ни где ничего не течет. Чтобы создать давление в районе верхней трубы я просто поднимал повыше конец отводящего гибкого шланга. Опять обнаружилась протечка. Отключаем панель, сливаем воду, сушим, устраняем точки протечки.

Третье подключение. Тут я набрался смелости и решил создать в панели повышенное давление, чтобы проверить, а вдруг он выдержит давление воды в водопроводе. Для создания давления я просто пальцем закрыл отводящую трубку. Воздух, оставшийся в коллекторе, должен был послужить амортизатором для плавного повышения давления. По мере нарастания давления, держать палец становилось все труднее, а потом клеевой шов у нижней трубы лопнул.

Выводы: слегка повышенное давление коллектор держит, но наглеть не стоит. Отключаем панель, сливаем воду, сушим, устраняем точки… нет уже не точки, а целые участки протечки.

Чтобы укрепить шов, я решил сделать его гораздо ТОЛЩЕ. Клеевым пистолетом в районе шва укладывалось большое количество термоклея, а потом все это оплавлялось и выравнивалось старым советским молотковым паяльником.

Для этой работы можно было бы использовать строительный фен, но у меня его просто не было.

После долгих мучений шов получился такой.

Некрасиво конечно, но главное чтобы держалось. Очередное испытание выявило лишь одну маленькую протечку, которая была быстро устранена. Настроение к этому моменту у меня уже было не самое радужное — оптимизм по поводу прочности швов несколько угас. Поэтому проверять панель на повышенное давление я не стал, чтобы не расстраиваться еще больше.

Не прибавило мне оптимизма также и испытание пустой панели на ярком солнце. Меньше чем за минуту коллектор нагрелся до такого состояния, что стало больно к нему прикасаться. Клей на швах на солнечной стороне также очень быстро размягчился. Понятное дело, что ни о какой прочности шва в такой ситуации речи быть не может. Если в рабочем режиме вода в коллекторе будет нагреваться до такой же высокой температуры или будет нарушена циркуляция, скорей всего швы не выдержат. Тут, видимо, надо брать какой-то более тугоплавкий термоклей.

Ну да ладно. Я на все эти неудачи махнул рукой — все таки это эксперимент. Решил довести сборку солнечного коллектора до конца. А если не получится, разберу и буду делать коллектор по другой схеме.

Дальше сборка собственно весьма проста. На трубы я одел изолятор из вспененного полиэтилена:

Под панель коллектора положил лист обычного пенопласта толщиной 5 см. А сверху все это накрыл еще одним листом прозрачного поликарбоната. Поликарбонат был немного шире, поэтому края я просто загнул и впоследствии прикрутил к пенопласту шурупами

Для изготовления рамы я использовал металлический профиль для гипсокартона. Профиль выбирал исходя из предполагаемых размеров «сандвича» солнечного коллектора. У меня профиль то ли 70х30, то ли  70х40, но как оказалось, можно было брать чуть больше, например 70х70.

В профиле самым бесцеремонным образом были вырезаны отверстия для вывода наружу точек подключения солнечного коллектора.

Немного неаккуратно, но те ножницы по металлу, которые оказались у меня под рукой, иначе сделать просто не позволяли

Сборка рамки производилась на шурупы, которые предназначены для скрепления таких металлических профилей. В результате получилось такое вот изделие.

Как видно на фото, мне пришлось дополнительно «стянуть» горизонтальные участки рамки между собой. Без этой стяжки они  не хотели держать форму. Все таки для рамы был выбран слишком тонкий металлический профиль большой длины.

А вот как коллектор выглядит с обратной стороны.

На двух последних фотографиях коллектор показан на «испытательном стенде» Он был полностью заполнен водой и простоял так около часа. Протечек ни где не обнаружилось. Это обнадеживает.

Посмотрим как он покажет себя после подключения в реальных рабочих условиях.

Источник

___________________________________________________________

самодельный воздушный агрегат для дома

Отопление частного дома можно организовать различными способами. Чаще всего это подключение к центральной системе теплоснабжения или установка индивидуальных отопительных приборов, которые нагревают теплоноситель путем сжигания газа, жидкого или твердого топлива. Реже владельцы небольших коттеджей для обогрева используют электрические котлы и различные типы тепловентиляторов, направляя воздушный поток в жилое помещение.

Сегодня существуют альтернативные методы отопления, например, устройства, которые превращают солнечное излучение в тепловую энергию. Солнечные коллекторы для отопления дома достаточно эффективны, полностью экологичны и не требуют особого ухода.

Почему использовать солнечное отопление выгодно

Система отопления от солнечных коллекторов имеет несколько очень значимых достоинств:

  • солнечное тепло бесплатно и им можно пользоваться во всех уголках планеты, несмотря на климатические условия;
  • использование энергии солнца предполагает затраты исключительно на приобретение установки, все остальное время солнечный коллектор работает полностью автономно;
  • конструкция системы автономного отопления с солнечным коллектором достаточно проста, поэтому ее можно даже сделать своими руками.

Важно понимать, что самодельный коллектор и аккумулятор тепловой энергии будет иметь достаточно низкий КПД по сравнению с промышленными образцами, но все равно позволит значительно сэкономить средства на горячем водоснабжении дома.

Самый простой расчет показывает, что коллектора площадью 3 м2 достаточно не только для создания источника горячей воды в небольшом частном доме, но и для его отопления в период межсезонья. Это ощутимо снижает затраты на использование энергоресурсов, а следовательно, и ваш семейный бюджет.

Устройство гелиоустановки

Солнечные коллекторы для отопления и создания горячего водоснабжения дома состоят из следующих компонентов:

  • устройство для нагрева воды или другого теплоносителя;
  • аккумулятор тепловой энергии;
  • контур для перемещения тепловой энергии теплоносителем.

Солнечный коллектор для обустройства отопления представляет собой систему трубок с теплоносителем, в качестве которого выступает воздух, вода, пропилен-гликоль или любая другая незамерзающая жидкость. В качестве аккумулятора тепловой энергии выступает емкость со змеевиком, по которому циркулирует поступивший из коллектора теплоноситель. Тепловой контур служит для объединения устройства нагрева воды, воздуха или антифриза с аккумулятором тепла.

Принцип работы

Солнечная энергия попадает в коллектор, где нагревает теплоноситель, который циркулирует в гелиоустановке. После нагрева он попадает в аккумулятор тепла, где происходит теплообмен между змеевиком и водой. Нагретая вода из аккумулятора поступает в систему отопления или горячего водоснабжения дома.

Циркуляция воды в гелиосистеме происходит самотеком или при помощи циркуляционного насоса (в зависимости от назначения системы и способа установки бака-аккумулятора по отношению к коллектору).

Естественное движение воды или воздуха по контуру обусловлено принципом конвекции, когда после нагрева жидкость стремится вверх от коллектора к аккумулятору тепла.

Если брать в расчет, что гелиосистема будет использоваться только для горячего водоснабжения, то кроме солнечного коллектора и аккумулятора тепла больше ничего не нужно. Если систему планируется использовать для отопления дома, то для прокачки теплоносителя через радиаторы может потребоваться насос.

Типы поглотителей тепла

Современная промышленность освоила производство нескольких типов нагревательных теплообменников для солнечных отопительных систем:

  • воздушный;
  • плоский;
  • вакуумный.

Все они работают по одному принципу, но имеют некоторые конструктивные особенности и разницу в КПД. Для правильного выбора того или иного типа гелиоустановки необходимо знание их особенностей и грамотный расчет. Рассмотрим каждый тип солнечного коллектора более подробно.

Плоский нагревательный теплообменник

Такой тип солнечного коллектора для отопления состоит из плоского, теплоизолированного с трех сторон короба, заполненного адсорбирующим тепло веществом. Внутри этого вещества находится теплообменник из тонкостенных металлических труб, по которому циркулирует вода или пропилен-гликоль.

Конструкция плоского поглотителя солнечной энергии и расчет необходимых его параметров достаточно просты, поэтому именно этот вид «нагревателя», используют для изготовления отопительной гелиосистемы своими руками.

Вакуумный теплообменник

Вакуумный поглотитель тепла состоит из стеклянных труб, внутри которых находятся трубки меньшего диаметра с адсорбентом, аккумулирующим солнечное тепло. Внутри трубок с адсорбентом проложены металлические трубочки, по которым движется теплоноситель.

Между стеклянной трубкой большого диаметра и трубкой с аккумулирующим тепло веществом создан вакуум, который препятствует утечке тепла из адсорбента в атмосферу.

КПД такой установки самый высокий среди всех типов солнечных коллекторов. Исходя из мощности устройства производят расчет его необходимой площади для нагрева теплоносителя.

Воздушный коллектор для обогрева дома

В таком устройстве в качестве теплоносителя используется воздух, циркуляция которого осуществляется как естественным способом, так и при помощи вентилятора. Как правило, воздушный коллектор используют исключительно для обогрева в период межсезонья небольших дачных построек, так как такая конструкция имеет достаточно низкий КПД. Кроме того, для нагрева воды и создания горячего водоснабжения дома эта установка не подходит, поэтому используется нашими соотечественниками крайне редко.

Несмотря на низкую эффективность воздушный поглотитель имеет два достоинства: простую конструкцию и отсутствие теплоносителя (воды), а вместе с ней и коррозии, течей, проблем с замерзанием и пр.

Создание солнечного коллектора своими руками

Для создания плоского поглотителя солнечного тепла потребуется достаточно сложный расчет необходимой площади теплообменника, объема емкости и длины контура. Самостоятельный расчет требует соответствующих знаний, опыта и исходных данных. Для упрощения задачи вам будет представлено три основных типоразмера гелиосистемы:

  • объем аккумуляторного бака в 100-150 л длина трубы теплообменника 7 м, площадь коллектора 2 м2;
  • объем аккумуляторного бака в 150-300 л длина трубы теплообменника 9 м, площадь коллектора 3 м2;
  • объем аккумуляторного бака в 200-400 л длина трубы теплообменника 12 м, площадь коллектора 4 м2.

Инструкция по самостоятельной сборке.

Короб

Сделать его можно из фанерного или пластикового листа и деревянных реек, закрепленных по его периметру в качестве бортов.

Теплообменник

Для его изготовления необходимо сварить решетку или согнуть из металлических труб, которые и будут использоваться для нагрева теплоносителя. Готовое изделие закрепить скобами на второй лист пластика или фанеры и окрасить черной матовой краской.

Приклеить утеплитель по всей площади короба.

Сборка

Установить теплообменник в подготовленный короб. Сверху поглотителя установить стекло, предварительно промазав места его соприкосновения с коробом герметиком на основе силикона. Самодельный поглотитель солнечного тепла готов.

Изготовление аккумулятора тепла

Из медной трубы следует сделать змеевик, после чего поместить его в подготовленную емкость, предварительно проделав отверстия для входа и выхода теплоносителя. Вывести через уплотнения из аккумулятора концы теплообменника.

Утепление

Необходимо тщательно утеплить бак-аккумулятор минеральной ватой.

Для сохранности утеплительного слоя закрыть его листом оцинкованного металла, создав своеобразный «чехол».

Монтаж

Следует изготовить опорную конструкцию под аккумулятор тепла и установить рядом с ним готовый солнечный коллектор. После чего все устройства соединить тепловым контуром.

Запуск системы

Для нагрева воды и подачи ее в здание следует заполнить систему антифризом, а аккумулятор тепла водой. Через 20-30 минут вода в баке начнет нагреваться, после чего ее можно использовать для отопления помещения или других нужд.

Солнечные коллекторы зимой: исследуем целесообразность установки

Бесперебойная подача горячей воды для отопления помещения или общего пользования  независимость от коммунальных служб и сезонности, а главное – резкое сокращение ощутимых затрат в бюджете семьи на коммунальные платежи– всё это доступно каждому с установкой солнечного коллектора.

Жарким летом, когда уровень солнечного излучения наиболее высокий, полученную тепловую энергию можно расходовать на ГВС, полностью (и бесплатно!) покрывая потребность в горячей воде. Избыток тепловой энергии легко направить на обогрев воды в бассейне открытого или закрытого типа. В более прохладные сезоны, кроме традиционного отопления здания и ГВС, с помощью солнечного коллектора можно поддерживать нужный климат в теплицах, отапливать бани и коттеджи. Справляется со своими функциями солнечный коллектор и зимой.


Эффективность гелиосистем зимой


В холодное время года счета за коммунальные услуги возрастают, как минимум, в два раза. Больше энергии, и соответственно, денежных средств, уходит на поддержание тепла в квартире, доме, офисе и любом промышленном помещении. При этом батареи часто оказываются еле теплыми, а температура в помещении не обеспечивает комфорт и безопасное для здоровья проживание. Работа установки зимой позволяет значительно снизить расходы на отопление и использование горячей воды.
Количество тепла, которое вырабатывается в холодное время года, зависит от множества факторов, например:
— общая эффективная площадь поглощения коллекторов;
— угол наклона коллекторов;
— географическое расположение и особенности климата.
Количество осадков и число пасмурных дней непосредственно влияют на работу и эффективность солнечных коллекторов зимой. Только учитывая вышеуказанные факторы, можно собрать необходимую гелиоколлекторную установку, которая максимально удовлетворит потребность в тепле и горячей воде. Изучая отзывы на солнечные коллекторы зимой, можно с уверенностью сказать, что подбор и расчет оборудования стоит доверить профессионалам DUALEX.


Особенность эксплуатации солнечных коллекторов зимой


Чудес не бывает — в холодное время года, когда температура окружающей среды падает ниже 0°C, а погода не так часто радует солнечными деньками, снижается и производительность коллекторов. Поэтому подбирая такую установку необходимо сразу учитывать возможность эксплуатации и отопления дома солнечными коллекторами зимой в период минимальной активности солнца.
При отрицательной температуре вакуумные коллектора продолжают успешно работать. Это объясняется следующими факторами:
1. Цилиндрическая форма трубок позволяет улавливать лучи под разным градусом. Это означает, что коллектор работает и с утра, и на закате дня, независимо от того, попадают ли прямые солнечные лучи на него под 90о или нет. Работают они и в пасмурную погоду – коллектор улавливает рассеянные лучи Солнца.
2. Значительно меньшие теплопотери (по сравнению с плоскими коллекторами). Более 92% полученной энергии преобразовывается и направляется в контур отопительной системы. При этом работать солнечный коллектор зимой может в условиях до -35°C.
3. Установка под оптимальным углом наклона способствует как повышению КПД, так и, при значительных осадках зимой, влияет на самоочищение коллектора. Снег буквально сползает с трубок, оставляя их поверхность чистой.
Чтобы солнечный коллектор зимой работал максимально эффективно, все расчеты, подбор оборудования, установку и подключение системы стоит доверить специалистам DUALEX.


Бесплатное тепло зимой: миф или реальность?


Вакуумные солнечные системы, обладающие наиболее высоким КПД, позволяют пользоваться горячей водой и теплом круглогодично, не тратя на это семейный бюджет. В холодное время года, если мощности установки недостаточно для полного обеспечения потребности в горячей воде, на помощь такой системе приходит возможность подогревать воду в баках ТЭНами. Однако и в таком случае использование гелиосистемы дает существенную экономию средств.
Приобретение качественной установки – отличная инвестиция в собственное будущее. Главное – правильно рассчитать мощность и учитывать особенности при монтаже системы, зная, как работает солнечный коллектор зимой.
Установки других типов (к примеру, достаточно распространенные плоские панели), являясь более бюджетными вариантами, не обеспечивают нормальную подачу тепла в холодное время. Особенно обманчиво использование самодельного солнечного коллектора зимой. Его мощности недостаточно для работы в пасмурные дни, не говоря уже об отрицательных температурах.
Отсутствие вакуума (в отличие от качественных заводских установок) вызывает значительные теплопотери, снижая эффективность работы такого устройства зимой. При отрицательной температуре вода, используемая в качестве теплоносителя, в самодельных коллекторах замерзает, делая дальнейшее использование установки невозможным. Солнечный коллектор зимой, созданный своими руками, обеспечивает невысокую эффективность и в случае, когда вместо воды используется антифриз.
Изучить поведение такой установки в течение определенного времени можно, исследуя солнечный коллектор на видео зимой. Такой инструмент позволяет точно понять, как быстро с гелиосистемы сходит снег, посчитать количество дней в сезон, когда работа коллектора практически невозможна из-за осадков, что в сочетании с исследованием колебания температуры позволит оценить эффективность и возможность использования в холодную пору.
Таким образом, эксплуатация гелиоустановки зимой позволяет снизить нагрузку на отопительную систему, уменьшить расход газа, электричества и других источников энергии, дает возможность обогревать помещение и пользоваться горячей водой без значительных затрат на оплату коммунальных платежей. Солнечный коллектор зимой – экономное и экологичное средство отопления!

Солнечный коллектор из радиатора отопления

Самодельный солнечный коллектор сделанный из радиатора отопления: фото, описание самоделки.

Автор собрал своими руками собрал солнечный водонагреватель на основе старого радиатора отопления. Коллектор позволяет в летнее время использовать горячую воду, которая нагревается за счет естественного тепла от солнечных лучей. Такой водонагреватель можно установить в доме или на даче и обеспечить себя горячей водой в летний период.

Использованы материалы:

  • Плоский радиатор центрального отопления.
  • Листовой металл.
  • Пластиковые трубы.
  • Краны и фитинги.
  • Стекла оконные.
  • Пластиковая бочка емкостью 160 литров.

Солнечный водонагреватель автора работает следующим образом. В бак с помощью насосной станции закачивается холодная вода из колодца.  На крыше дома установлен радитор таким образом, чтобы верхняя часть радиатора была на уровень ниже чем бак-накопитель. Так же в целях естественной циркуляции воды трубы ее подвода от бака-накопителя установлены под углом, в сторону радиаторов.

Таким образом в летнее время, когда средняя температура воздуха в тени равна 25+ градусам, вода в баке за день может нагреться до 50-60 градусов.

Изготовлен металлический корпус для коллектора.

В корпус помещён радиатор.

Радиатор подключён к баку с водой.

На чердаке дома разместили пластиковую бочку вместимостью в 160 литров, которая была соединена с радиаторам и системой водопровода дома при помощи пластиковых труб и фитингов.

Благодаря тому, что трубка, по которой поступает нагретая вода в бак была подключена чуть выше середины бака, самая нагретая и горячая вода скапливается всегда вверху бака-накопителя.

Автор дополнительно обернул бочку минеральной ватой и фольгой, после чего бак-накопитель стал своего рода большим термосом, что позволяет сохранять ещё продолжительное время тёплую воду в баке.

Верх радиатора находится ниже уровня бака-накопителя, поэтому нагретая на солнце вода естественным путем поступает в бак. Как и полагается трубки подвода воды от бака сделаны с уклоном вниз в сторону радиатора.

В зимнее время, воду из системы нагрева необходимо слить. Поэтому стоит предусмотреть специальные дренажные краны внизу радиатора. Лучшая возможность слить воду с бака-накопителя, это перекрыть насосную станцию, а затем открыть кран подачи холодной воды. Таким образом вся находящаяся вода в баке стечет сама. В случае, если вы не сольете воду из солнечного коллектора на зиму, то в морозы конструкция деформируется и придет в негодность. Хотя сам коллектор и сделан из достаточно дешевых материалов, но при должном обслуживании сможет проработать достаточно долгое время.


Автор самоделки: Александр.

Создайте свой собственный солнечный тепловой коллектор с плоской панелью: 8 шагов (с изображениями)

1. Используйте точный нож, чтобы разрезать гофрированный пластиковый лист до размеров 22 x 90 дюймов. При продольной резке обязательно прорезайте один канал по всей длине.

2. Разрежьте трубу из АБС-пластика на два отрезка длиной 20,25 дюйма каждый. Убедитесь, что при установке заглушки на любой конец общая длина составляет 22 дюйма. Я выбрал эту ширину, чтобы она поместилась между стропилами крыши моего чердака.

3. Просверлите отверстие 3/4 дюйма сбоку двух крышек из АБС-пластика.Это будет проще, если предварительно просверлить сверло меньшего размера и постепенно увеличивать его размер.

4. Увеличьте отверстия грубым круглым напильником до тех пор, пока не сможете продеть ниппель. Метчика нужной резьбы у меня не было, поэтому я планировал просто приклеить соски на место.

5. Просверлите полукруглую выемку диаметром 3/4 в конце каждой трубки из АБС-пластика. Проще всего зажать их в тисках встык. В качестве альтернативы вы можете просверлить это отверстие в трубке из АБС-пластика перед тем, как разрезать ее, а затем просто прорезать центр отверстия, чтобы сделать надрезы. Эти выемки подходят вокруг конца соски, когда крышки ABS на месте.

6. Используя настольную пилу с упором, осторожно проделайте паз по всей длине каждой трубки из АБС-пластика. Полученное поперечное сечение должно иметь вид буквы «С». Трубка из АБС-пластика имеет тенденцию сжиматься во время резки, поэтому, когда вы закончите, ширина паза будет меньше ширины вашего пильного диска. Пропустите каждую трубу через пилу второй раз, чтобы срезать рез и получить одинаковую ширину.

7. Повторите процесс прорезания пазов с крышками из АБС-пластика, помня, в каком направлении вы хотите, чтобы ниппели указывали, когда панель полностью собрана.

8. Выполните сухую сборку, собрав трубки, крышки и ниппели из АБС-пластика. Возможно, вам придется немного вырезать выемку, чтобы прорезь в трубке совпала с прорезью в крышке.

9. Повторите установку всухую на конце гофрированного пластикового листа. Разделите АБС по мере необходимости, чтобы везде было удобно.

10. После того, как все будет хорошо подогнано, повторите сборку, нанося силиконовый клей на все сопрягаемые поверхности перед сборкой и нанося полоску силикона на все швы после сборки.

11. Повторите то же самое для другого конца гофрированного пластика.

12. Дать высохнуть не менее 24 часов.

13. После высыхания разрежьте садовый шланг пополам и прижмите обрезанные концы к ниппелям.

14. Наполните панель водой (просто подсоедините садовый шланг к крану в вашем доме) и проверьте на утечки.

15. Если есть утечки, слейте воду из панели, тщательно высушите область вокруг утечки и заклейте большим количеством силиконового клея, оставив для высыхания еще 24 часа.

16. Если вы хотите позже рассчитать КПД вашего коллектора, вам необходимо знать его объем. Это хорошее время, чтобы слить его в ведро и измерить объем (включая шланги). В моем было 7,2 литра.

17. После устранения утечек покрасьте поверхность коллектора в черный цвет и поставьте где-нибудь для просушки.

Солнечные коллекторы своими руками

Разве вы не хотели бы отапливать дом с помощью бесплатной энергии солнца? Существуют простые, недорогие, самостоятельные солнечные проекты, которые могут снизить ваши счета за отопление.

Солнечная энергия может улавливаться самодельными солнечными коллекторами горячего воздуха и термосифонными панелями, обеспечивая бесплатное тепло. Установки направляют нагретый солнцем воздух через окно или проем в стене в соседнюю комнату.

Если вы серьезно относитесь к сокращению счетов за отопление дома этой зимой, вам поможет один из этих недорогих самостоятельных проектов:

Захват солнечного тепла
Постройте этот простой солнечный обогреватель, который висит за окном и посылает в комнату бесплатное солнечное тепло.


План здания для захвата солнечного тепла
Из этого подробного крупномасштабного плана можно построить теплоотвод.

План строительства солнечного коллектора горячего воздуха
Этот коллектор горячего воздуха навесного типа поможет отапливать ваш дом зимой и предоставит место для хранения летом.

Солнечный коллектор горячей линии
Он похож на обычный плоский солнечный коллектор, но уникальность этой панели заключается в том, что она содержит специально изогнутый отражатель, который концентрирует падающий солнечный свет на клиновидной абсорбционной трубке.

Панели солнечного обогрева штормового окна
В этой статье подробно рассказывается, как использовать переработанные штормовые окна для создания солнечного коллектора горячего воздуха, который доставляет тепло в дом через вентиляционное отверстие, установленное в южной стене или окне.

Солнечная панель горячего воздуха
Постройте эту настенную воздушную панель с термосифонированием (TAP), чтобы обогревать комнату в вашем доме силой солнца.

Ультра-простой солнечный настенный обогреватель горячего воздуха
Это устройство сделано путем покрытия каркаса 9 на 14 футов из досок 1 на 6 дюймов прозрачным пластиком, установки панели на южной стене и установки верхних и нижних вентиляционных отверстий в доме.

Переработанный солнечный нагреватель горячего воздуха
Алюминиевые банки, разрезанные пополам, используются для изготовления абсорбирующей пластины для этого солнечного коллектора горячего воздуха с двойным остеклением. Температура в коллекторе достигает более 200 градусов, а первоначальный блок снизил расходы на отопление церкви в Новой Англии более чем на 60 процентов.

Сверхлегкий и супер недорогой гофрированный коллектор горячего воздуха на солнечных батареях
Вы можете построить этот настенный коллектор горячего воздуха размером 8 на 12 футов из гофрированного стекловолокна, чтобы обогревать ваш дом.

Автоматический контроль коллектора
Гофрированный коллектор для горячих волос (вверху) будет более эффективным с этим автоматическим термостатом.

Недорогой солнечный коллектор горячего воздуха
Вы можете обогреть здание размером 30 на 40 футов с помощью этого настенного солнечного коллектора.




Первоначально опубликовано: февраль / март 2006 г.

DIY Солнечное отопление с теплоотводом — DIY

Этот супер-простой и сверхэффективный солнечный коллектор для отопления своими руками можно собрать всего за час!

Некоторые климатологи предсказывают, что предстоящая зима может быть более холодной, чем предыдущая. Но даже если этот прогноз сбудется, вам будет намного теплее во время предстоящей осады с ясной, но отрицательной погодой, чем в холодную погоду января и февраля прошлого года, если в вашем доме или квартире есть одна или несколько незатененных южных сторон. лицом к окнам, и если вы оборудуете эти окна с помощью Heat Grabber. (См. Галерею изображений для планов Heat Grabber или щелкните здесь, чтобы увидеть планы большего размера, которые вы можете заказать.)

Хотите верьте, хотите нет, но этот простой и эффективный солнечный коллектор для отопления своими руками в виде «оконной коробки» может быть изготовлен опытным домашним мастером менее чем за час (или менее чем за два часа среди нас, которые более неуклюжи) для удивительно низкая цена 32 $.18 (расшифровку материалов см. На следующей странице, цены с 1977 г.). И после постройки это прочное устройство должно прослужить долгие годы.

Секрет быстрой сборки и низкой стоимости Heat Grabber — это новая изоляционная плита из жесткого пенопласта производства Celotex. Эта плита, получившая торговое название «Thermax TF-610», для прочности пропитана стекловолокном, облицована с обеих сторон тяжелой алюминиевой фольгой и доступна толщиной от 3/8 дюйма до 1-7 / 8 дюйма. Celotex фактически продает этот материал как замену обшивке из прессованного волокна или «школьной доске», которая сейчас используется подрядчиками при строительстве домов с деревянным каркасом, и не рекомендует его для каких-либо других целей. MOTHER EARTH NEWS Исследователи , однако, провели тепловые и другие испытания изоляционной плиты и пришли к выводу, что она почти идеальна для использования в быстрых, простых и недорогих солнечных коллекторах, таких как Heat Grabber.


Да, у основного листа Thermax TF-610 есть небольшой недостаток. Его поверхность из алюминиевой фольги относительно легко может быть проколота любым, кто намеревается это сделать. Однако есть как минимум два решения этой проблемы: [1] Заменить Thermax-610 / .019 — это тот же пенопласт, но покрытый с одной стороны гораздо более толстым слоем алюминия — на Thermax-610, указанный здесь. , или [2] используйте Thermax-610, предусмотренный в наших планах, и защитите стороны и низ готового коллектора кожухом из обрезков древесины.Второй вариант будет дешевле, чем первый, но на самом деле ни один из вариантов действий не требуется, если только вы не живете в районе с высоким уровнем вандализма.

Идеальный угол для размещения солнечного коллектора, обращенного на юг (в Северном полушарии) или коллектора, обращенного на север (в Южном полушарии), — это ваша широта плюс 10 градусов. В сумме это составляет 45 градусов для офисов MOTHER EARTH NEWS North Carolina (которые расположены в 35 градусах к северу от экватора), и это угол, показанный на следующих планах.Пожалуйста, примите это во внимание при выполнении разрезов, указанных в шагах 3 и 6 на схемах в галерее изображений.

(Майами, например, расположен примерно в 25 градусах северной широты, что означает, что коллекторы должны быть расположены под углом 35 градусов к горизонту, что, в свою очередь, означает, что срезы 67,5 градусов, указанные в следующих планах, должны составлять 72,5 градуса. для Майами, сокращение должно быть 65,75 градуса для Вашингтона, округ Колумбия, 61,5 градуса для Сиэтла и 54,5 градуса для Анкориджа.Вы можете рассчитать конкретный угол для вашего собственного местоположения (вычтите вашу широту плюс 10 из 180 и разделите на два) или просто усредните его из цифр, приведенных здесь. (Угол критический, но не , а критический.)

Помните, что все размеры, указанные на чертежах, предназначены для коллектора, специально предназначенного для установки окон в одном конкретном доме. Если ваши окна шире или не так широки, не стесняйтесь строить свои тепловые захваты соответственно. И не стоит излишне зацикливаться на том, чтобы удерживать верхнюю и нижнюю воздушные камеры в коллекторе точно такой же глубиной, как показано здесь.Вариант на полдюйма или больше вполне подойдет. На самом деле, очень трудно удержать этот маленький BTU-граббер от работы, если его проходы достаточно глубоки, чтобы воздух мог вообще циркулировать по ним.

Последнее предупреждение: хотя одинарное стекло, используемое для покрытия прототипа Heat Grabber, не более и не менее безопасно, чем одинарное стекло, которое в настоящее время используется в миллионах штормовых дверей и окон по всему континенту. Он может сломаться и, возможно, порезать вас или ребенка, если по какой-либо причине кто-то из вас в него упадет.Примите все меры, которые сочтете необходимыми, чтобы такого несчастного случая не произошло.


Как работает теплоотвод

Heat Grabber — это не что иное, как непромокаемый бокс, который изолирован снизу и по бокам и покрыт стеклом. Изолированный разделитель расположен внутри этого ящика и выдвинут своим верхом, образуя открытую «губу» на верхнем конце ящика. Эта кромка предназначена для зацепления за подоконник, чтобы само окно можно было плотно опустить на стекло, которое закрывает верхнюю часть устройства захвата тепла, оставляя основной корпус солнечного коллектора «прислоненным» к южной стороне дома на угол 45 градусов или лучше.(См. Иллюстрацию в галерее изображений — Как это работает.)

Управление устройством так же просто. Когда солнце светит, его лучи проходят через стекло в верхней части устройства захвата тепла, попадают на верхнюю поверхность перегородки (которая окрашена в черный цвет) и нагревают алюминиевую фольгу, покрывающую перегородку. По мере того, как фольга нагревается, она, в свою очередь, нагревает воздух рядом с собой. И этот воздух, как и следовало ожидать, поднимается вверх по поверхности перегородки и начинает выливаться через отверстие в верхней части устройства захвата тепла.

Но, конечно, этот горячий воздух не может двигаться вверх по поверхности перегородки, если он не тянет холодный воздух вокруг ножки перегородки, чтобы занять свое место. Который втягивает еще больше холодного воздуха через нижнее отверстие в верхней части коллектора (единственное место, где холодный воздух может попасть в герметичный блок) и вниз под центральную перегородку.

Итак, у нас есть солнечный комнатный обогреватель с «конвективной петлей», который автоматически работает только на солнечной энергии. Всякий раз, когда светит солнце, этот умный маленький блок (который, насколько мы можем судить, кажется старым дизайном Стива Бэра, модифицированным Уильямом А.Шурклиффа и дополнительно уточненных некоторыми из научных сотрудников MOTHER EARTH NEWS) просто сидит и радостно нагнетает в дом тысячи БТЕ тепла. А когда перестанет светить солнце? Воздух в ящике охлаждается и пытается опуститься к подошве коллектора, что «отключает» весь конвективный контур. (Другими словами, Heat Grabber будет извергать тепло в комнату, когда светит солнце, но он не будет отводить тепло из комнаты, когда солнце не светит.)


Инструменты для сборки устройства захвата тепла

Thermax настолько прост в эксплуатации, что вам не понадобятся пилы, молотки или другие «обычные» столярные инструменты для создания этого солнечного коллектора.На самом деле, Heat Grabber был сконструирован с использованием немногим больше, чем транспортир, рулетка, кисть и два маленьких ножа «мы сами их сделали». (См. Иллюстрацию в галерее изображений — Инструменты.)


Эти ножи представляют собой не что иное, как блоки из твердой древесины размером 1 дюйм на 2-1 / 2 дюйма, вырезанные для удобного размещения в руке. Затем куски дерева были прорезаны и закреплены болтами 10-32 и барашковыми гайками для захвата лезвий универсального ножа Stanley 1992-5 либо под углом 45 градусов (для разрезов V), либо под углом 90 градусов (квадратные разрезы) к блокам. лица.

Все разрезы на Thermax, используемом в коллекторе, были сделаны прямыми и точными путем скольжения одного или другого из двух ножей по доске или другой линейке, которая была прикреплена к жестким листам пенопласта. Для V-образных разрезов лезвие ножа под углом 45 градусов было настроено так, чтобы разрезать только примерно на 1/32 дюйма алюминиевой облицовки на «дальней» стороне листа (не полностью через облицовку или пенопласт. Так как толщина пены немного различается, эта настройка (по большей части) не позволяла лезвию резать слишком глубоко.Два таких разреза (с переустановкой линейки между ними), конечно, были необходимы для завершения каждой буквы «V».

А если не хотите делать V-образные разрезы и складывать коробку солнечного коллектора? Затем просто соберите свой «тепловой захват» из отдельных частей Thermax, сделанных с надрезом под прямым углом; снимите алюминиевую пленку со стыковой поверхности каждого стыка; и склеиваем секции — поролон с пеной — вместе.


Материалы для захвата тепла

Кол-во Материал Стоимость нашей единицы Стоимость использованных материалов
1 л. 1 дюйм на 4 фута 8 футов Celeotex Thermax TF-610 10 долларов США.75 $ 10,75
1/2 листа + 3/4 дюйма на 4 фута 8 футов Celotex Thermax TF-610 8,85 4,60
1 трубка Клей для панелей Liquid Nails 1,00 1,00
1/2 трубки силиконовый герметик 3.50 1,75
16 Гвозди отделочные № 8 (накатанные) 0,00 0,00
3 штуки стеклорез одинарной прочности t подходит (заказ «все включено») 10,49
1/4 рулона изолента цельнометаллическая из алюминиевой фольги 4. 00 1,00
1 кварт Черная матовая краска Rustoleum 2,59 2,59

Общая стоимость материалов, использованных при строительстве оконного коллектора: 32,18 $

Размер коллекционера: 12,6 квадратных футов

Стоимость квадратного фута: 2,56 доллара США

Примечание: Все материалы были приобретены в розницу в местных торговых точках в Хендерсонвилле, Северная Каролина (1977).Ожидайте незначительных различий в ценах, указанных выше в вашем регионе, из-за различий в транспортных расходах, политике дилеров и т. Д. Thermax TF-610, например, производится в Тампе, Флорида, и чем дальше вы живете от Флориды, тем больше у вас Дилер, вероятно, оплатит поставку панелей. Однако Celotex открывает несколько новых заводов по производству Thermaz по всей стране, и эта особая разница в ценах скоро исчезнет.


Первоначально опубликовано: сентябрь / октябрь 1977 г.

Строительство солнечного коллектора своими руками 101


Что мне нужно, чтобы проложить траншею для моего коллектора и что нужно быть в канале?

Копаете ли вы просто вниз на 8 дюймов и использовать гликоль для защиты от замерзания, или вы планируете копайте ниже линии заморозков, вы должны тщательно обдумать, что закапывать.Как только он будет похоронен, вы не захотите снова его выкопать!

Один подросток и один взрослый выкопал и засыпал эту траншею глубиной 8 дюймов и 100 футов вручную за один уик-энд.

Вот список того, что входит в 4-дюймовую канализационную трубу из ПВХ. трубопровода:

— 2 ряда 1/2 «Pex-Al-Pex (обернутые изоляцией)
— 6 ниток провода динамика 22 калибра (5 для сращивания проводных термометров) и 1 для датчика дифференциального регулятора)
— 1 прядь электропровода (я поставил наружную электрическую розетку на одну панельных столбов, которые были пригодится на этапе строительства)
— 1 кабель коаксиального кабеля LMR 400 (ничего общего с солнечной батареей, но я Радиолюбитель, и это была отличная возможность получить еще одну серию коаксиального кабеля. обратно в лес).

Если бы мне пришлось делать это снова, я бы поставил 3/4 дюйма pex для лучшего потока.

Как установить термометры для контроля температуры при различных баллы в моей системе?

Независимо от типа солнечной коллекторы, которые мы строим, нам всем нужны датчики температуры, чтобы контролировать, насколько хорошо они работают. Имея несколько датчиков на пути движения вашей жидкости / воздушным путем, вы можете точно определить эффективность работы вашего сборщика (ов), как сколько тепла вы теряете на выходе из коллектора и насколько хорошо ваше тепло передаточная катушка работает.Изолируя производительность коллектора без других влияний мы можем гораздо лучше сравнить, насколько хорошо разные конструкции коллектора работают, а также точно определяют эффекты любых изменений, которые мы вносим в наши системы. Вдобавок ко всему это очень круто и весело показать своим друзьям всю бесплатную охоту, которую вы улавливаете!

Вот дисплей у меня вдоль моего стола, чтобы я мог контролировать несколько точек температуры в моей системе кратко:


Я рассматривает возможность создания рамы для размещения дисплеев.

Было необычно пасмурно почти всю неделю, поэтому показания ниже нормы. Чтение белые термометры слева направо:

1. Температура резервуара (200 галлон) уже выросла с 66 до 81,5 по состоянию на 10:46.

2. (термометр в форме яйца) жидкость вход в первый коллектор 8 ‘X 8’ составляет 81,3 (минимальные потери при проезде через 100 футов)

3. Жидкость, выходящая из первого коллектора / входящая в коллектор pex 92,3

4.Жидкость, выходящая из коллектора pex, составляет 121,1

5. Внутренний pex температура коллектора> 160.

Итак, мой общий рост температуры с два коллектора вместе взятых составляет около 40 градусов.

Установка датчиков температуры это просто. Поскольку большинство отслеживаемых нами точек находятся на большом расстоянии, мы должны удлинить провод от градусника до датчика. Пока может возникнуть соблазн приобрести беспроводные термометры, я рекомендую использовать проводные маршрут. Вы не захотите выходить в разгар зимы, чтобы переодеться батареи. Кроме того, вы захотите контролировать несколько точек и беспроводной термометры могут мешать друг другу.

Любой недорогой проводной термометр заработает. Есть много на выбор до 10 долларов. Они доступны в Target, Walmart, Home Depot и т. д. Вы также можете заказать их онлайн здесь: http://www.partshelf.com/wired-indoor-outdoor-thermometer.html

Вот шаги для установки ваши датчики температуры:

1. Проведите провод, такой как провод динамика 22 калибра, от места вашего дисплея до места, где вы планируете прикрепить датчик.Если вам нужно много проводов, с небольшим количеством очков вы можете найти 1000 фут-роллов онлайн по цене от 40 до 60 долларов.


я в мой 100-футовый заглубленный 4-дюймовый канализационный канал из ПВХ включал шесть прядей проволоки.


2. Покупка ваши наружные проводные термометры.


3. Обрежьте провод. от градусника до датчика:


5. Полоса концы:


6. Повторите обработать проводом динамика и скрутить концы вместе:


7.Если ты действительно предпочел бы не паять, вы всегда можете просто накрутить гайки для проводов и перейти к шаг 10. В противном случае держите пайку утюгом по проводу, чтобы он стал достаточно горячим, чтобы принять припой. Если ты никогда не припаял провод раньше, не волнуйтесь, это просто.


8. Коснитесь своего припаяйте к проводу, а не к кончику утюга. Эти провода маленькие, нагреваются быстро и очень легко паяются. На провод потечет припой:


9.Обернуть изолента:


10. Принять решение место, которое вы хотите контролировать, снимите изоляцию и заклейте датчик на трубе с изолентой:


11. Крышка с изоляция и обмотайте изоляцию изолентой, чтобы скрепить ее:


12. Повторите шаги 5–9, чтобы подсоединить конец провода датчика к другому концу провода динамика.


Какой простой и недорогой способ убедиться, что моя система никогда не нагнетает давление?

Если установить система обратного слива, при которой вода стекает прямо обратно в теплообменник. резервуар для хранения не является воздухонепроницаемым (в большинстве случаев нет), ваша система никогда не создавайте давление, и вам не о чем беспокоиться.На с другой стороны, если у вас есть система, в которой используется теплообменник, и не место для жидкости расширяться при нагревании, будут некоторые повышение давления.

Вы можете легко приспособиться к этому двумя способами. Самый обычный подход — использовать расширительный бачок. Я начал с одного такого:

Единственная беда с расширительным баком то, что я не мог видеть или контролировать свой расход и что происходило с моей системой. В качестве альтернативы я придумал это подход; который стоит столько же, сколько старая банка для чая со льдом, гарантирует, что ваша система никогда не будет повышать давление и, как дополнительное преимущество, удаляет воздух, который может найти свой путь в вашу систему:

Здесь pex трубка, питающая насос (за сосудом), откачивает воду из емкости.Жидкость возвращается после того, как он прошел через змеевик в резервуаре для хранения тепла, опорожняется обратно в банку. Важно, чтобы оба конца Pex оставались внизу. уровень воды или часть вашей жидкости может вытечь обратно и перетечь через банку когда насос отключается. Моя банка находится примерно в самой низкой точке в системе, но работает нормально.

Мониторинг ваша скорость потока проста. Пока ваш насос работает, просто потяните за возвратный трубку pex из банки и время, необходимое для наполнения небольшого стакана.

Я использовал этот подход с августа 2009 года, и он работает нормально. Я слежу от объема в банке, который колеблется в зависимости от температуры, но редко требует долива.

DIY Солнечное воздушное отопление

Мы смотрим на FOUR сами солнечные тепловые воздухонагреватели (коллекторы) и выбираем лучшие характеристики из каждого, что мы считаем идеей солнечного воздухонагревателя.

Первый — Солнечный воздухонагреватель «Предварительный нагреватель»

Этот солнечный «подогреватель» прикреплен к воздухозаборнику воздухообменника дома R2000.При использовании материалов на сумму всего 50 долларов из магазина повторного использования и т. Д. Эта простая конструкция обеспечивает значительный приток тепла при первоначальном тестировании. Когда вентилятор теплообменника работает на низком уровне, этот солнечный воздухонагреватель обеспечивает повышение на 20 градусов Цельсия между наружной температурой и подачей в теплообменник. Когда вентилятор работает на высокой мощности, прирост температуры составляет 15 градусов. Воздух всасывается через отверстие в правом нижнем углу и питает воздухообменник через соединительную коробку в нижнем левом углу устройства.

Материалы состоят из 20 футов 4-дюймового алюминиевого вентиляционного отверстия сушилки, окрашенного в черный цвет, окна с двойным стеклопакетом из магазина повторного использования (см. Примечание ниже о проблемах с двойным стеклом по сравнению с закаленным стеклом), дерево для коробки, изоляция ISOTHERM 1 дюйм для облицовки ящика и краски. Обычно блок размещали над воздухозаборником для воздухообменника, но существующий водопроводный кран препятствовал этому размещению, поэтому солнечный нагреватель был размещен чуть выше, и была построена коробка для соединения двух блоков. Окно было заделано на месте, и со всех четырех сторон были добавлены металлические полосы.

В настоящее время проводятся дальнейшие испытания для измерения фактического расхода воздуха через теплообменник с присоединенным солнечным воздухонагревателем. Входное отверстие было уменьшено с 5 дюймов до 4 дюймов ширины черной алюминиевой трубки.

Как упоминалось выше, тепловое окно с двумя панелями было приобретено в магазине повторного использования за 8 долларов США для этого проекта. После первого дня полного солнечного света внутреннее стекло треснуло. Строитель порекомендует для этого солнечного воздухонагревателя закаленное стекло.

Апрель 2012 Обновление: на входе в вентилятор с рекуперацией тепла «Lifebreath 100» поток воздуха составляет 40 кубических футов в минуту, когда вентилятор установлен на низкую скорость. Когда вентилятор работает на высокой скорости, расход воздуха составляет 80 кубических футов в минуту.

Подогреватель постоянно увеличивает температуру воздуха между входом и выходом на 20 градусов Цельсия, когда вентилятор работает на низкой скорости, и на 15 градусов Цельсия, когда вентилятор работает на высокой скорости. Такие результаты возможны только тогда, когда подогреватель находится под прямыми солнечными лучами и относительно ясная погода. Если пасмурно или солнце не освещает подогреватель (рано или поздно днем), понятно, что повышение температуры воздуха составляет 0.

Секунда — Нагреватель воздуха на солнечной батарее

Этот простой маленький пассивный солнечный обогреватель , сделанный из переработанных алюминиевых банок для напитков, можно использовать для обогрева изолированного гаража или небольшой комнаты. Более крупный обогреватель или несколько подобных обогревателей можно использовать для обогрева больших помещений или для обогрева меньших помещений до более высокой температуры.


Ящик состоит из шпилек 2 x 4 дюйма и листа фанеры, рассчитанного на то, чтобы плотно удерживать 5 рядов из 10 окрашенных в черный цвет алюминиевых банок для напитков . Внутренняя часть коробки герметизируется герметиком, чтобы предотвратить выход горячего воздуха. Холодный воздух всасывается из отверстия в нижней части коробки, а нагретый воздух выходит сверху, проходя через трубу в обогреваемое пространство. К верхней части коробки приклеивается лист оргстекла, чтобы впускать солнечный свет, но не выходить горячему воздуху.

Этот солнечный обогреватель работает, втягивая воздух, который нужно нагреть, в нижнюю банку колонны банок. Затем воздух внутри банок нагревается солнечной энергией, и горячий воздух внутри них поднимается вверх (благодаря конвекции ) и направляется в трубу, которая снова входит в здание для обогрева.

Для прохождения воздуха через колонну банок необходимо просверлить в них отверстия. В верхней части каждой банки уже есть отверстие, из которого наливается напиток.Это просто оставляет отверстия в нижней части каждой банки, которые нужно просверлить. В нижней части каждой колонны просверливается отверстие диаметром 1 дюйм сбоку.

Банки каждой колонны склеены герметиком или силиконовым клеем и окрашены черной краской , чтобы помочь им поглощать солнечную энергию. Краска для барбекю, камина или печки отлично подходит для этого, поскольку она не отслаивается. Убедитесь, что он имеет полностью матовую поверхность .

Внутренняя часть коробки также должна быть окрашена той же краской перед приклеиванием столбиков банок на место с помощью герметика или силиконового клея .Внешняя часть коробки должна быть обработана консервантом, лаком или краской, чтобы помочь ей выдержать погодные условия в течение многих лет.

В идеале все устройство должно быть закрыто листом закаленного стекла . Однако закаленное стекло (если вы не можете найти и переработать лист) также очень дорого. Поэтому можно использовать оргстекло (пластик), но оно будет разрушаться намного быстрее и станет непрозрачным, блокируя солнечный свет.

Отверстие в верхней части коробки служит выходом для горячего воздуха и может быть подсоединено к зданию / помещению, подлежащему обогреву, с помощью изолированной трубы.

Требуемые улучшения этого дизайна

  • «Сложите» банки вместе, чтобы воздух распространялся дальше и имел больше возможностей забирать тепло от алюминиевых банок.
  • Добавьте вентилятор как на впускную, так и на выпускную стороны блока, чтобы перемещать больше воздуха.
  • Заизолируйте коробку — дно, стороны и торцы. С жесткой пеной толщиной один дюйм легко работать.
  • Следите, чтобы входные и выходные трубы были короткими и хорошо изолированными.

Особое примечание:

  • Джентльмен из Ньюфаундленда коммерциализировал этот метод солнечного воздухонагревателя, используя 240 алюминиевых банок для сборки устройства. Их веб-сайт: Cansolair Website
  • видео их продукта здесь: Cansolair Video

Третий — Нагреватель воздуха на солнечных батареях Grabber

Этот солнечный воздухонагреватель, сделанный своими руками, взят из журнала Mother Earth за 1977 год.В моем местном Home Depot больше нет изоляционных плит из жесткого пенопласта, производимых Celotex, под торговым названием Thermax TF-610. Для прочности он был пропитан стекловолокном и облицован с обеих сторон тяжелой алюминиевой фольгой. Тем не менее, они несут несколько панелей из жесткого пенопласта, покрытых с обеих сторон. Я полагаю, что с небольшим воображением вы все же могли бы сделать один из этих солнечных коллекторов. Эти планы показывают, насколько легко и недорого можно сделать свой домашний солнечный обогреватель.

Планы — это всего лишь две картинки, которые вы распечатываете в полном размере.Прогуливаясь по строительному магазину, я заметил большие листы пенопласта и алюминиевые листы потолка. Возможно, что-то похожее на эту конструкцию можно будет собрать, если у вас нет листов пенопласта, покрытых алюминием хотя бы с одной стороны.

Страница 1 слева и страница 2 справа.

Щелкните страницы, чтобы получить увеличенную версию, которую можно распечатать.

Этот солнечный воздухонагреватель крепится к окну и легко снимается в жаркие летние месяцы или в самый холодный день зимой.

Требуемые улучшения в этом дизайне

  • используют конструкцию мертвого воздуха и вытягивают воздух только из нижней части алюминиевого листа.
  • Сделайте зигзагообразный воздушный поток и добавьте вентилятор, чтобы улучшить воздушный поток через зигзагообразный лабиринт.

Четвертый — Губка DIY солнечный воздухонагреватель

Наш третий взгляд на солнечные воздухонагреватели переносит нас в Сидней, где мы нашли модель, разработанную Дэвидом и Николь Джонс.

Эта конструкция солнечного коллектора включает черную металлическую пластину, которая поглощает солнечное излучение и преобразует его в тепло, и герметичную полость наверху, чтобы удерживать тепло внутри. Тепло отводится из задней части пластины (через другую герметичную полость) и распространяется вентиляторами. Это часто называют конструкцией «мертвое воздушное пространство ».

Воздух проходит через нижнюю камеру зигзагообразно, что дает ему время собрать много тепла.

Такие конструкции существуют уже много десятилетий. Вся коллекторная коробка сделана из алюминия, что упростило работу с различными предварительно изготовленными листами и трубками из местного хозяйственного магазина.

Еще одним ключевым аспектом конструкции губки Solar является использование очень тонкой (<1 мм) поликарбонатной пленки для передней крышки. Это значительно снизило стоимость по сравнению со стеклом или более толстым 3-миллиметровым поликарбовым листом. Поликарбонатная пленка имеет такие же пропускающие свойства (около 90%), что и специально разработанное стекло SunPlus с низким содержанием железа, но за небольшую часть стоимости.Он также чрезвычайно прочен и выдерживает град.

Были добавлены внутренние каналы, чтобы «змеиться» воздух вокруг коробки, собирая тепло по мере его поступления. Для коробки длиной 1,5 м это соответствует общему воздушному пути 4,5 м — длины, достаточной для того, чтобы собирать достаточно тепла.
В зависимости от длины воздуховода, необходимого для подключения к солнечному нагревателю и от него, вам потребуется добавить несколько вентиляторов. Дэвид добавил в общей сложности 4 вентилятора для своего солнечного коллектора, который был установлен на крыше.

Для получения полных инструкций по сборке этого устройства посетите веб-сайт Дэвида и Николь «Солнечная губка».

Какой солнечный воздушный коллектор лучше?

У всех четырех солнечных воздухонагревателей, сделанных своими руками, есть свои достоинства и недостатки. Вместо того, чтобы придерживаться одного из вышеперечисленных дизайнов, мы бы взяли смесь Solar Sponge и Heater Gabber от Mother Earth. Для нашего климата, когда зимой бывает снег, мне нравятся оконные крепления и изотермические коробки, а также вертикальное настенное крепление «солнечного подогревателя».Я бы смешал с этим дизайн мертвого воздуха и змеиный воздушный поток от Sponge. С дизайном змеи мне, вероятно, понадобится добавить веер.

Таким образом, у нас есть ЛЕГКОЕ оконное крепление, которое мы можем вынуть в летние месяцы. Коробка должна быть изолирована и иметь достаточно прочную конструкцию, чтобы выдерживать снеговую нагрузку. Мы используем пространство для мертвого воздуха в верхней части коллектора и втягиваем теплый воздух, который прошел через нижнюю камеру. Скорее всего, мы бы использовали малошумный вентилятор, чтобы обеспечить надлежащий поток воздуха через солнечный коллектор.Конечно, прикрепление к существующему теплообменнику обеспечит вентилятор для отвода тепла в помещении. Настенное крепление также защищает солнечный обогреватель от попадания снега и находится под разумным углом для сбора зимнего солнечного света (60 градусов идеально подходят для нашего северного местоположения).

Построение этого солнечного воздухонагревателя, сделанного своими руками, может сэкономить 1000 долларов за зиму

Солнечный коллектор для нагрева воздуха — это быстрый и простой способ начать пользоваться альтернативной энергией. Несмотря на то, что это довольно простой массив, он может помочь вам сэкономить много денег на счетах за электроэнергию.Простая термодинамика, без движущихся частей, дешево и эффективно.

Установлен солнечный коллектор воздушного тепла

Как это работает?

Схема термосифона — поток горячего / холодного воздуха

Действуют два принципа:

Темные поверхности поглощают свет. Любой объект черного цвета поглощает световые волны всех длин и не отражает ни одного, поэтому выглядит черным. Как вы знаете, свет — это энергия, и, поглощаясь чем-то, он может превращаться в тепло.Основная часть коробки будет покрыта материалом черного цвета для улавливания солнечного тепла.

Это тепло передается воздуху в ящике. По мере того, как воздух нагревается, он хочет подняться из коробки. По мере того, как теплый воздух поднимается, он втягивает более холодный воздух в коробку. Это явление известно как термосифонный эффект . Это метод пассивного теплообмена, основанный на естественной конвекции, при которой жидкость (в данном случае воздух) циркулирует без использования механического насоса.

Пошаговая сделка!

В самой эффективной и действенной конструкции в качестве коллектора тепла используется оконный экран из черного металла.Это отлично работает, потому что имеет большую площадь поверхности и уже рассчитано на максимальный воздушный поток. Если вы можете получить черный металлический оконный экран, это лучший вариант. Если вы не можете этого сделать, легко покрасить экран в черный цвет.

Сколько вы сэкономите?

Если один обогреватель может поддерживать тепло в гостиной в течение всего светового дня, это от 6 до 10 часов, когда обогреватель не включен. В нашей средней гостиной обычно требуется электрический обогреватель мощностью 3200 ватт. Если он проработает 10 часов, это 32 киловатт-часа (кВтч).Допустим, электричество стоит 19 центов за кВтч. Это более 6 долларов в день или 42 доллара в неделю. С октября по март это примерно 1022 доллара.

Что бы вы сделали этой зимой, потратив лишние 1.000 долларов?

(Посещали 4819 раз, сегодня 1 посещали)

Простая конструкция солнечного коллектора

Конструкция солнечного коллектора — Монтаж солнечного коллектора

Общее количество солнечной радиации, падающей на каждый квадратный метр в Великобритании, составляет около 1000 кВт / ч в год — из при этом должно быть возможно собрать от 25% до 33%.Для типичной системы водяного отопления подходящей считается площадь около 4 квадратных метров.

Количество воды, которое может быть непосредственно нагрето до «пригодной для использования» температуры, довольно мало, поэтому обычно лучше использовать панель для предварительного нагрева холодной воды в отдельном резервуаре перед подачей в основной резервуар для горячей воды. Резервуар для хранения солнечной энергии должен составлять около 50 литров на 1 квадратный метр панели, однако это не очень критично. Бак и все соединительные трубопроводы должны быть хорошо изолированы, чтобы избежать потери собранного тепла.Лучшее положение для панели (Великобритания) — незатененное положение под углом к ​​западу от юга под углом примерно 35 градусов к горизонтали. Другая ориентация между ЮВ и ЮЗ и различные наклоны от 10 до 50 градусов вызывают лишь небольшое снижение общей собранной энергии.

Конструкция плоского солнечного коллектора

В показанной здесь простой однопанельной конструкции в качестве солнечного коллектора используется стандартный радиатор центрального отопления из штампованной стали. Они относительно дешевы и легко доступны как новые, так и бывшие в употреблении (при использовании подержанной панели радиатора удалите любую декоративную краску с лицевой поверхности и при необходимости повторно загрунтуйте).Тепловой КПД коллектора, использующего радиатор центрального отопления, должен быть сопоставим со многими коммерчески доступными конструкциями. Однако относительно большое содержание воды замедлит реакцию, особенно при низких уровнях солнечной радиации. Панель должна быть цельной, без ребер и с резьбовыми соединительными отверстиями на всех четырех углах, чтобы можно было легко достичь необходимого «диагонального» потока воды. Могут использоваться другие типы только с двумя соединениями, при условии, что соединения находятся в диагонально противоположных углах.Панель необходимо покрасить матовой черной масляной краской, чтобы получить поверхность с высокой впитывающей способностью. Все трубопроводы внутри корпуса должны быть изолированы, чтобы предотвратить утечку накопленного тепла обратно в корпус.

Размер коллектора, используемого в этой конструкции, не определяется, кроме как «h» и «w», это позволяет вам собрать корпус в соответствии с требованиями ваш конкретный размер радиаторной панели. Старайтесь, чтобы размер панели не превышал 1 кв. М, панели большего размера тяжелые, и с ними будет сложно работать, особенно на крыше.Если вы сможете собрать корпус в его окончательном положении, работа будет проще.

Ящик для панели представляет собой простой деревянный ящик, сделанный из древесины, обработанной давлением (в качестве альтернативы можно использовать консервант для древесины хорошего качества). Показано одинарное переднее остекление с оконным стеклом толщиной 3 мм — для ящиков более 1 метра в любом направлении используйте отдельные куски стекла, вам нужно будет добавить дополнительные опорные планки для остекления на передней части панели, чтобы закрепить их. Всегда измеряйте готовый футляр, прежде чем покупать стекло и покупать его обрезанным по размеру — оставьте 2-миллиметровый зазор вокруг стекла, чтобы оно могло расшириться.В Крышка переднего остекления должна выступать за нижний край корпуса примерно на 12 мм, чтобы дождь стекал, не натекая на корпус. Зажимы для остекления, прикрепленные к внутренней части нижнего края коробки, используются для удержания крышки на месте.

Изоляция, установленная за коллектором, должна быть высокотемпературного типа, так как температура может достигать 140 градусов Цельсия, если вода не циркулирует через панель. Другие, более дешевые альтернативные материалы (например, полистирол) не подходят, поскольку они могут давать усадку или даже плавиться.Следует избегать движения воздуха между задней частью панели и изоляцией, поэтому убедитесь, что все зазоры заполнены.

Практически невозможно сделать коллектор полностью водонепроницаемым в течение длительного периода, даже если не будет дождя, может произойти некоторая внутренняя конденсация. Чтобы это не стало проблемой, проделайте три или четыре 5-миллиметровых «дышащих» отверстия в нижней части корпуса прямо перед изоляцией.

Срез солнечного коллектора

Перечень материалов для солнечного коллектора

Примечание: большинство размеров показаны h + x и w + y — где h и w — высота и ширина конкретной панели, которую вы используете.Измерьте их перед тем, как начать, и просто добавьте x или y по мере необходимости.

  • Древесина — древесина хвойных пород, строганная по всему периметру, предпочтительно обработанная танилами или, в качестве альтернативы, обработанная консервантом для древесины хорошего качества. Указанные размеры пиломатериалов являются стандартными номинальными размерами — при планировании они будут меньше.
идентификация детали размер (номинал) длина количество
А 125×25 Вт + 150 мм 1
B 125×25 h + 125 мм 2
С 100×25 Вт + 100 1
Д 25×12 Вт + 100 1
E 25×12 ч + 75 2
ф 50×25 ч + 100 2 (или 3, где w больше 1 метра)
г 45×12 Вт + 150 1 (под углом (оба конца))
H 45×12 H + 150 2 (скошенный уголок (один конец))
Дж 50X50 крой по фигуре 4 (или 6, где w больше 1 метра)
  • Фанера Внешний вид 9 мм, h + 150 x w + 150
  • Absorber Press steel, однопанельный радиатор без ребер — с заделкой на всех четырех углах для обеспечения диагонального потока (или в 2 диагонально противоположных углах)
  • Стекло w + 95 xh + 135 мм, 3 мм (измерьте коллектор, чтобы проверить размер перед покупкой — установите отдельные куски стекла, чтобы все размеры были меньше 1 м, это потребует дополнительных опорных стержней на передней части панель по мере необходимости)
  • Держатели стекла — 2 на край максимум 1 м
  • Угловые пластины (250 мм x 100 мм, низкоуглеродистая сталь — изогнутые на 90 градусов) 4 шт.
  • Изоляция из высокотемпературного минерального волокна толщиной 50 мм
  • Соединительный трубопровод и соединители — медь, размер и количество в соответствии с
  • Металлическая пленка (например, кухонная пленка) по мере необходимости
  • Клей — столярный клей ПВА по необходимости
  • Замазка или глазурованная лента по необходимости
  • Винты и др.по мере необходимости

Базовый корпус солнечного коллектора

Сборка солнечного коллектора

  1. Распилите пиломатериалы, обработайте все пропиленные концы качественным консервантом для древесины.
  2. Покрасьте панель коллектора, используя как можно более тонкий слой высокотемпературной черной масляной краски. (черная краска для выхлопных газов — хорошее предложение).
  3. Склейте и скрутите стороны (A, B и C).
  4. Приклейте и прикрутите подкладочный слой к раме.
  5. Привинтите угловые пластины на место.
  6. Приклейте и прикрутите (с задней стороны) поперечные распорки (F) на место.
  7. Просверлите несколько дренажных отверстий диаметром 5 мм в нижней части перед изоляцией.
  8. Положите панель на место внутри корпуса, отметьте на каркасе точки входа в трубы. Снимите амортизатор и просверлите отверстия для ввода труб.
  9. Приклейте и прикрутите полоски D и E к внутренним сторонам корпуса так, чтобы они обеспечивали плоскую поверхность для стекло на той же линии, что и верх нижней стороны (С).
  10. Обрежьте изоляцию между поперечными распорками и корпусом и установите ее.
  11. Покройте изоляцию металлической фольгой.
  12. Если корпус не собирается, сейчас хорошее время, чтобы установить и закрепить корпус.
  13. Положите панель в корпус и закрепите с помощью прижимных блоков на поперечных распорках.
  14. Установите трубопровод между панелью и остальной частью системы, заполните зазоры вокруг труб, где они входят в корпус с помощью подходящего гибкого герметика.
  15. Вероятно, лучше не снимать переднюю крышку, пока система не будет заполнена водой и система проверена на герметичность.

alexxlab

Related Posts

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *