Теплопотери помещения расчет: Расчет теплопотерь дома, онлайн калькулятор теплопотерь дома

Содержание

Расчет теплопотерь дома | Тепло и энергия для Вас

Коэффициенты(К)

 

= ватт/м2 х м2 х К1 х К2 х К3 х К4 х К5 х К6 х К7 = ватт

Где:

– теплопотери дома., ватт/м2 – удельная величина тепловых потерь (65-80 ватт/м2), которая состоит из теплового потока через материалы окон, стен и потолка, вентиляция и т.п., м2 – площадь помещения., К – коэффициенты.

Пример расчета теплопотерь дома (общей площадью 100 м2).

 

К1 – двойной стеклопакет К1=1,0

К2 – материал стен (ж/бетон,кирпич,утеплитель) К2=1,0

К3 – отношение площади окон к площади пола 20% К3=1,0

К4 – температура на улице -20°С К4=1,0

К5 – число наружных стен К5=1,33

К6 – помещение над расчетным (холодный чердак) К6=1,0

К7 – высота комнат 2,5м К7=1,0

=72,5 х 100 х 1,0 х 1,0 х 1,0 х 1,0 х1,33 х 1,0 х 1,0 = 9642 ватт

Теплопотери дома — лишь составная часть его теплового баланса. Не поленитесь прочесть дальше о тепловом балансе дома.

ТЕПЛОВОЙ БАЛАНС ДОМА

Выше Вы ознакомились с приближенными расчетами теплопотерь дома. Но этот расчет является лишь составной частью общего теплового баланса дома, где учитываются и другие факторы тепловых потерь, а также и иные источники поступления тепла.

Дополнительные потери тепла

1. Большое значение имеет влажностной режим помещения, непосредственно связанный с тепловым. Оптимальная относительная влажность жилого помещения 50-60%. Источниками влаги в помещении являются: приготовление пищи, стирка и глажение белья, душ, ванная, влажная уборка, растения, потоотделение человека. Средняя семья может вносить до 15л в сутки в атмосферу своего жилища. Влага содержится в воздухе в виде водяных паров, и максимальная величина влагосодержания зависит от температуры воздуха:

Например, если у Вас при температуре внутри помещения 20oC содержится 10,7г/м3 влаги, то тогда температура снизится до 12oC, влажность воздуха будет уже 100%, и дальнейшее понижение температуры приведет к конденсации влаги с ее выпадением преимущественно на быстро остывающие конструкции здания. Поэтому, если в холодный период года Вы приезжаете в загородный дом иногда, или наоборот, проживаете в нем постоянно, но иногда выезжаете на некоторое продолжительное время, обязательно следует тщательно проветривать помещение перед тем, как уехать. Это позволит Вам сохранить ограждающие конструкции здания от конденсации на них влаги и уберечь их от гниения, плеснеобразования и намокания. Повышенное влагонасыщение ограждающих конструкций приводит к увеличению теплопотерь, что проиллюстрировано на рис.2

2. Поскольку компания профессионально занимается не только выпуском электроотопительного оборудования, но и отопительными системами, у нас существует многолетняя база данных по европейской части Российской Федерации о максимальных из средних (по румбам) скоростей ветра и максимальных (из средних) температурных характеристиках наиболее холодного месяца — января. Средняя температура на европейской части РФ в январе -3,6oC, направление ветра (среднее, по румбам) юго-запад.

Дополнительные поступления тепла

1. Тепло в помещение может поступать при работе электронагревательных приборов, радио-телевизионной аппаратуры, холодильника, стиральной машины, утюга, фена и другого электрооборудования. Значительное количество теплоты выделяется при приготовлении пищи. Оглянитесь у себя в доме — зная, например, количество включенных электролампочек и их суммарную мощность, а также мощность другого включенного электрооборудования, можно приблизительно подсчитать количество дополнительного тепла, поступающего в Ваш дом. Для приведенного в предыдущем разделе сайта примера дома площадью 100 м

2 эти цифры составят 2-3 кВт в час.

2. Выделяют тепловую энергию также люди и домашние животные, например: при выполнении легкой, средней и тяжелой работы человек выделяет, в среднем, соответственно до 172 Вт; 172-193 Вт; более 193 Вт. Считайте сами.

3. Есть и в природе положительный фактор — плюсовая часть теплового баланса. Это инсоляция (солнечная радиация).

Температурные показатели в таблице выведены на основании статистических данных об интенсивности воздействия солнечной радиации на поверхность стен и окон (вт/м2) и ее продолжительности (час), географическая широта 60o (Ленинградская область).

4. Мы редко задумываемся, что такое комфорт, когда нам хорошо и уютно, зато состояние теплового дискомфорта, когда мерзнут ноги, дует в спину, сыреют стены, быстро выводит из равновесия и не дает полноценно жить, работать, отдыхать. Все комфортные условия жилища и рабочего места имеют свои определенные физические параметры, а, следовательно, поддаются контролю и регулированию.

В качестве расчетной температуры в зимний период для определения теплопотери и подбора теплогенератора принимается (согласно рекомендаций нормативной литературы) 18

oC.Нормативный температурный перепад между температурой воздуха внутри жилого помещения, наружной стеной, чердачным перекрытием и полом первого этажа не более 6,4 и 2oC соответственно. Запомните это и не вешайте термометр на внешнюю стену помещения — обязательно обманет. Полезно, с точки зрения гигиенистов, снижать температуру на 2-3oC ночью в спальне, что связано с изменением интенсивности обмена веществ.

Вы ознакомились с основами теплового баланса здания. Основываясь на этих знаниях, Вы можете самостоятельно подобрать необходимое оборудование для отопления конкретного помещения или поручить это дело профессионалам.



Поделиться ссылкой на страницу:

Расчёт теплопотерь дома

Из статьи Теплопотери дома теперь мы знаем, что такое теплопотери. А как правильно посчитать теплопотери при проектировании отопления? Сколько секций радиатора необходимо установить в помещение?

Теплопотери через ограждающие конструкции складываются из теплопотерь через отдельные ограждения или части из площади. Теплопотери через внутренние ограждения в прилегающие помещения, имеющие пониженную температуру, допустимо не учитывать при разности температур не более 3С.

Зная площадь стен, окон, дверей, пола и потолка, а также их конструкцию, мы можем посчитать теплопотери через каждый элемент. Сложив результат получим общие теплопотери помещения.

Для примера рассчитаем теплопотери кухни в коттедже:

Кухня имеет площадь 15,1м2. Но нас интересует площадь ограждающих конструкций.

Для расчёта примем, что стена кухни с большим окном находится с северной стороны.

В расчётах допускается округлять значения до десятков Вт.

Площадь северной стены: (Длина)5,34м x (Высота)3,3м = 17,62 м2.

Обмер помещение производится по внешней стороне. Если часть стены приходится на угол, то учитывается вся длинна стены. Если стена смежная, то берём половину толщины стены.

Площадь проёма окна: 1,8 х 2,0 = 3,6 м2.

Т.к. нас интересует площадь именно стены, то вычитаем площадь окна: 17,62-3,6=14,02м2.

Площадь восточной стены: 3,1м x 3,3м = 10,23-1,8 = 8,43м2.

Площадь проёма окна: 0,9 х 2,0 = 1,8 м2.

Коэффициенты теплопроводности стен коттеджа высчитываются в зависимости от материалов и толщины стены.

Стен: R=3,29 м2*С/Вт

Коэффициент теплопроводности для пластикового окна примерно равен 0,56 м2*С/Вт, но

с учётом инфильтрации: 0,25 м2*С/Вт.

Есть несколько методов учёта инфильтрации. Но суть общая: добавляется коэффициент, который зависит от разности давления (на это есть таблицы в разных справочниках и учебниках). Мы на работе пробовали считать разными методами. Цифры в итоге получаются примерно одинаковые. В итоге самый быстрый и простой способ — сразу изменить коэффициент теплопроводности окна.

Для г.Чебоксары температура холодной пятидневки -32С.

Температура помещения кухни: +18С.

Если помещение угловое, то температура внутри помещение для расчёта берётся на 2 градуса больше. (+18+2=+20 градусов)

Разница температур: 52С.

Добавочные коэффициенты:

Стена выходит на север, появляется добавочный коэффициент +10%.

В помещение 2 наружные стены +5%

Получаем:

14,02*(1/3,29)*52*1,15=254,83 Вт — теплопотери северной стены.

3,6*(1/0,25)*52*1,15=861,12 Вт — теплопотери окна.

8,43*(1/3,29)*52*1,15=153,23 Вт — теплопотери восточной стены.

1,8*(1/0,25)*52*1,15=430,56 Вт — теплопотери окна.

Если в доме нет подвала и/или этот этаж последний — то необходимо добавить ещё и теплопотери через покрытие пола и/или потолка.

Теплопотери пола считаются по зонам, если пол на земле, расскажу об этом позже.

Сейчас у нас простой пример.

Итого: 1699,74Вт — округлим — 1700Вт — теплопотери кухни.

Обычно к расчётам всегда прибавляют 10-20% — на различные неучтённости: 1700*1.1 = 1870Вт.

Теперь необходимо подобрать отопительное оборудование для кухни.


Заказать расчёт тепловых потерь для вашего дома


Более подробно о расчёте теплопотерь вы можете узнать в учебниках:

  1. Справочник под ред. Староверова. Отопление. Часть 1.
  2. Отопление и Вентиляция. Часть 2. Богословский В.Н.
  3. Отопление. Богословский В.Н., Сканави А.Н.
  4. Либо попросить меня сделать вам расчёт: Обратная связь

Расчет теплопотерь дома своими руками

Программа для расчета

Автономные системы отопления характеризуются популярностью и неоспоримыми преимуществами. Но они ставят перед домовладельцами, решившимися на коренную перестройку своего дома или квартиры, сложную задачу — необходимость проведения множества специальных расчетов. Ведь чтобы новая инженерная сеть справилась с поставленными задачами, она должна быть правильно спроектирована. А в основе проекта лежат расчеты мощности отопительного агрегата, количества радиаторов, метража труб и других элементов системы. Не меньшее значение имеет и правильный расчет теплопотерь. Онлайновый калькулятор теплопотерь — самый простой способ получить необходимые цифры. Однако рассчитать количество тепла, уходящего из здания, можно и самостоятельно с помощью специальных формул и методик.

Просто о сложном — расчет по удельным характеристикам

Расчет теплопотерь легко может превратиться в настоящую головную боль. На практике рассчитать показатели можно по удельным характеристикам здания. Самое главное — помнить, что расчет ведется не по площади, а по объему здания. Также необходимо учитывать его назначение и этажность. Тепло уходит из дома через строительные ограждающие конструкции.

«Воротами», через которые теплый воздух покидает здание, являются окна, двери, стены, пол, кровля. Кроме этого, влияние оказывает дельта температур — разница между температурой воздуха внутри и снаружи дома. Нельзя сбрасывать со счетов и климатические условия местности. Значительная часть тепла уходит через систему вентиляции. Парадокс заключается в том, что при выполнении расчетов многие начинающие домостроители забывают учесть этот параметр и получают цифры, далекие от объективности.

Теплоизолирующие свойства ограждающих конструкций

По теплоизолирующим свойствам ограждающих конструкций выделяются две категории зданий по энергоэффективности:

  • Класс С. Отличается нормальными показателями. К этому классу относятся дома старой постройки и значительная часть новостроек в малоэтажном строительстве. Типовой кирпичный или бревенчатый дом будет иметь класс С.
  • Класс А. Эти дома имеют очень высокий показатель энергоэффективности. В их строительстве используются современные теплоизолирующие материалы. Все строительные конструкции выполнены таким образом, чтобы минимизировать потери тепла.

Зная, к какой категории относится дом, приняв во внимание климатические условия, можно начинать расчеты. Использовать для этого специальные программы или обойтись «дедовскими» методами и считать с помощью ручки и бумаги, решать владельцу дома. Коэффициент теплопередачи для ограждающих конструкций можно рассчитать табличными методами.

Зная, какие материалы были использованы для строительства и утепления дома, какие установлены стеклопакеты (сейчас на рынке немало энергосберегающих вариантов), можно найти все необходимые показатели в специальных таблицах.

Приступаем к расчетам

Основы потерь

Если верить специальной литературе и учебникам, тепло уходит из зданий и сооружений разными способами — конвекцией, излучением и т. п. Конечно, можно учесть при подсчетах и этот параметр, но на практике такие сложности абсолютно не нужны. Достаточно использовать общие формулы. В некоторых случаях к полученному результату необходимо добавить несколько процентов. Проводить такие расчеты значительно проще, чем углубляться в дебри узкоспециальных наук.

Сбросить со счетов можно и такие параметры, как тепло, получаемое через окна от солнечного света, поправку на ориентацию здания по сторонам света. Несколько недостающих ватт можно просто прибавить к полученным результатам. Нужны максимально точные результаты? Тогда своими силами, без специалистов, обойтись все равно не получится, даже с использованием специальных программ.

Пользуясь общими формулами, нужно помнить еще один важный момент. Помещения в доме имеют разное предназначение. Некоторые из них вообще необитаемы, например, кладовые и холлы, а значит, показатели нормальной температуры в них будут ниже, чем в жилых комнатах. При этом принцип расчета будет одинаковым, независимо от «обитаемости» комнаты.

Способ простой — «на глазок»

Как бы парадоксально это ни звучало, но простейшие расчеты можно сделать вообще без формул, методик и программ. Просто «на глаз». Для каждой местности существуют свои усредненные показатели. Например, в климатических условиях Центрального региона для отопления 10 кв. метров площади, при высоте потолков менее 3 метров, потребуется 1 кВт мощности. Такая «усредненная комната» имеет одну наружную стену и одно окно. В реальной комнате количество окон больше? Значит, мощностные показатели немного увеличиваются.

Такой расчет — самый грубый. Он позволяет прикинуть мощность котла и количество радиаторов. Решив считать таким способом, нужно помнить, что усредненные показатели могут не подходить для конкретного дома. Здание плохо утеплено? Мощности котла, рассчитанной таким методом, будет недостаточно. Владелец не экономил на теплоизоляции? Котел с усредненной мощности тоже не подойдет. В лучшем случае дома будет невыносимо жарко. Как видим, такой подсчет простой, но неперспективный.

Способ точный — теплопотери ограждающих конструкций

Соотношение потери и поступления

Более точные данные получаем другим методом. Сначала определяется площадь всех стен в доме. Из нее вычитается общая площадь оконных и дверных проемов. Отдельно определяем площадь кровли и пола. Все эти данные подставляем в формулу dQ=SxdT/R, где:

S — площадь

dT — дельта температур, или разница между температурой дома и на улице

R — сопротивление теплопередаче

Q, естественно, сами рассчитываем теплопотери и делаем расчеты для каждой ограждающей конструкции. Полученные результаты суммируем — получаем общие теплопотери. К полученной цифре добавляем потери на вентиляцию.

Такого расчета вполне достаточно, чтобы определить оптимальную мощность котла. С другой стороны, полученные этим способом данные не расскажут о том, сколько радиаторов потребуется для обеспечения тепла в каждой комнате.

Способ оптимальный — покомнатный расчет

При выполнении покомнатного расчета обязательно должна учитываться вентиляция. В соответствии со СНиП, в помещении должен обеспечиваться однократный воздухообмен за один час. На практике, такие показатели практически никогда не достигаются, но это не значит, что вентиляция не будет уносить тепло. Допустимо сокращение воздухообмена, но полностью обойтись без вентиляции нельзя.

Программное обеспечение

Расчет теплопотерь в этом случае будет выглядеть следующим образом. Для комнаты считаются потери тепла по вышеприведенной формуле. Далее определяется объем воздуха, необходимого для того, чтобы в комнате (с учетом ее обитаемости и посещаемости) могли спокойно находиться люди. Вычисляется мощность, необходимая для нагревания этого объема воздуха до комфортной температуры. Все полученные результаты — теплопотери стен, пола, потолка, окон, дверей, затраты на вентиляцию — суммируются, и получается реальная картина.

Аналогичные расчеты проводятся для каждого помещения, с учетом его предназначения, функционального использования, продолжительности нахождения в нем людей и других параметров. Например, кухня и ванная — это помещения с повышенной влажностью, а значит, здесь нужна хорошая вентиляция, что увеличит теплопотери.

Заключение

Рассчитав показатели для всего дома с учетом вентиляции, можно определить мощность котла. Покомнатные подсчеты помогут правильно выбрать радиаторы и количество их секций. Для облегчения работы по проектированию системы отопления можно воспользоваться онлайн-сервисами и специальными программами. Нужен идеально точный результат? Направляемся к специалистам, которые разработают профессиональный проект системы отопления со всеми ее особенностями.

Отопление — виды, расчет теплопотерь и пр.

Какие виды отопления бывают? Какой их них лучше выбрать? Как рассчитать теплопотери?

На все эти вопросы Вы найдете ответы, прочитав статью.

Виды отопления

Существует несколько видов теплоносителей:

  •  воздух;
  •  вода;
  •  антифриз;
  •  газ.

Воздух обладает малой теплоемкостью. При использовании воздуха в отоплении дома необходима организация сложной системы теплопроводов и сильного конвекционного потока.

Вода является наиболее подходящим вариантом отопления жилого дома. Ее теплоемкость имеет наивысшие показатели среди других жидкостей, а вязкость невелика.

Антифриз — теплоноситель, который обладает незамерзающими свойствами. Антифризами являются этилен-, пропилен- и другие гликоли, а также растворы определенных органических солей.

Газовое отопление природным газом является наиболее экономически выгодным вариантом. Соотношение энергоемкости и доступной цены делает газ наиболее привлекательным для отопления дома.

Еще одним вариантом отопления в частном доме являются теплые полы. Данная система имеет меньшие потери тепла по сравнению с обычными радиаторами отопления. А основным ее недостатком является большая энергозависимость. Таким образом, теплые полы лучше использовать в помещениях, где теплопотери наиболее высоки.

Расчет системы отопления для частного дома

Расчет системы отопления происходит в несколько этапов:

  1. Создание проекта дома;
  2. Выделение зон комфортности;
  3. Расчет теплопотерь в каждом отдельно взятом помещении;
  4. Распределение источников отопления в помещениях;
  5. Определение тепловой мощности радиаторов отопления для каждой комнаты;
  6. Проектирование схемы системы отопления с разведением теплоносителя,
  7. определение коэффициентов для расчета мощности котла;
  8. Расчет мощности котла с использованием основного и дополнительного коэффициента.

Для окончательного расчета системы отопления необходимо определить спецификацию необходимого оборудования, труб, вентилей, фитингов.

Если вам необходим монтаж системы отопления и полный расчет — обращайтесь к нам!

Выделение зон комфортности

Разделение общей площади дома на зоны комфорта позволяет рассчитать наиболее оптимальную схему расходования тепла. Можно выделить следующие зоны:

  •  Зона полного комфорта: температура воздуха 20-24 градуса, комнаты, расположенные у одной или двух наружных стен. К данной зоне относят детские комнаты, ванные и санузлы, бассейны, домашние сауны.
  •  Спальная зона: температура 21-25 градусов тепла, комнаты, где проходит большая часть времени живущих в доме людей. Сюда относят спальни, комнаты для гостей и прислуги.
  •  Жилая зона: температура от 18 до 27 градусов. Гостиные, столовые и кухонные зоны, рабочие кабинеты.
  •  Хозяйственная зона: температура от 15-16 градусов. Это могут быть мастерские, летние кухни и т.д.
  •  Проходная зона — температура от 12 градусов, так как в данной зоне жильцы часто находятся в верхней одежде. Для отопление наиболее эффективными могут стать системы теплых полов или потолочных инфракрасных излучателей.
  •  Подсобная зона — температура в этой зоне не нормируется.

Планировка помещений, с учетом системы отопления

Наиболее эффективно рассчитывать систему отопления на этапе проектирования дома и планирования помещений.

Комнаты, расположенные у 1-2х наружных стен потеряют меньше тепла, так как будут иметь только один внешний угол, на котором происходят наибольшие теплопотери.

Котел лучше располагать в отдельном помещении. Согласно требованиям противопожарной безопасности, объем такого помещения должен составлять не менее 8 кубических метров, высота потолка не менее 2,4 метра. В комнате должно быть открывающееся окно и решетка с воздушным фильтром для свободного притока воздуха. Вместо воздушной решетки можно использовать щель под дверью 40-ка мм шириной.

Бросовое тепло, которое дает котел, можно использовать полнее, если в смежных помещениях располагать комнаты зоны полного комфорта и санузлы. Вход в котельную при таком размещении должен быть предусмотрен с улицы или нежилой зоны.

Наиболее холодные помещения с наличием углов следует использовать для организации хозяйственной или подсобной зоны.

Расчет теплопотерь

Для того чтобы рассчитать возможные теплопотери, необходимо учитывать следующие данные:

  1. конструктивные особенности дома;
  2. материал стен;
  3. их толщину;
  4. средняя температура самого холодного месяца;
  5. коэффициент использования мощности котла.

Рассчитывать теплопотери необходимо отдельно для каждого элемента конструкции (стены, пол, потолок, окна, двери).

Выбор радиаторов отопления

Радиаторы отопления по составу делятся на 4 вида:

  •  стальные;
  •  алюминиевые
  •  биметаллические;
  •  чугунные.

Биметаллические радиаторы состоят из тонких стальных сердечников, на которые нанизаны алюминиевые секции. В отличие от алюминиевых, такие радиаторы могут выдерживать гидроудары и повышенное давление, однако цена на них значительно выше. Самыми недорогими являются стальные радиаторы.

Схема раздачи тепла

Существует две схемы раздачи тепла: тупиковая и оборотная.

При тупиковой системе замыкание водного потока происходит через батареи, полотенцесушители, теплые полы.

В оборотной системе происходит частичный переток воды из подачи в отвод. При оборотных схемах требуется минимальное количество труб, возможно использование котлов без байпаса, так как остывающая обратка сама оттягивает горячую подачу.

Тупиковые системы раздачи делятся на однотрубные, двухтрубные и комбинированные.

При однотрубной схеме подача и отвод производится одной трубой, что позволяет сэкономить на материалах. Однако, в такой системе необходим циркуляционный насос, а последовательное соединение радиаторов приводит к неравномерности нагрева.

Двухтрубная система имеет свои достоинства и недостатки. Из-за большого количества используемых труб, она дороже. Основной плюс системы — возможность регулировать температуру радиаторов независимо друг от друга. Реже всего используется комбинированная система.

Выбор труб для системы отопления

Для систем отопления используются трубы из таких материалов, как сталь, полипропилен, медь, а так же наиболее современный материал — сшитый полиэтилен (PEX-трубы).

Благодаря своей прочности и устойчивости к скачкам давления и гидроударам, а также доступной цене, наиболее популярными являются стальные трубы и полипропиленовые.

Самым прочным и долговечным материалом для труб считается медь. Медные трубы легко устанавливать, но цены на них очень высоки.

Сшитый полиэтилен (PEX-трубы) — это современный материал, который подходит как для внутреннего, так и для наружного применения. Надежный, устойчивый к высоким температурам, не боится замерзания.

Выбор инфракрасного обогревателя

Можно выделить пленочные и светодиодные обогреватели.

Пленочные являются низкотемпературными, они неэкономичны, лучше всего подходят в качестве дополнительного источника отопления.

Светодиодные инфракрасные обогреватели или инфракрасные картины — это цифровые фоторамки, в которых каждый пиксель изображения является еще и инфракрасным излучателем. Светодиоды излучают направленное вперед тепло, их коэффициент полезного действия довольно высок, необходимая температура выбирается с помощью пульта. Главным недостатком таких приборов является высокая цена.

Смотрите также

Расчет теплопотерь

Большинство граждан не задумывается о том, что такое теплопотери и почему их нужно знать, считая данную информацию для себя излишней. При этом жители многоквартирных домов (МКД) жалуются зимой на холод в квартирах, связывая это лишь с недостаточным отоплением. Предлагаем вместе разобраться в причинах температурного дискомфорта в холода, узнать о причинах потерь тепла в квартире. Знания, как произвести расчет данной величины помогут обеспечить не только комфортное проживание, но и финансовую экономию.

Теплопотери в жилом доме – понятие и влияние на условия проживания

Теплопотерей называется уровень тепла, утрачиваемого помещением через стены, окна, потолок и пол за определенное количество времени. Измеряется данная величина в ваттах на квадратный метр, и зависит от разницы внутренней и внешней температуры воздуха – чем она ниже, тем выше энергоэффективность здания.

Годовая разница природных температур составляет порядка 60 градусов – от –30° в зимний период до +30° летом. Комфортной температурой для человека считается уровень в +18/+24°, который необходимо поддерживать в жилых зданиях. Добиваются этого за счет стройматериалов (теплоизолирующих потолков, стен и полов, энергосберегающих стекол), систем обогрева, проветривания или кондиционирования. Законодательно установлены строительные правила, нормы и стандарты, определяющие тепловую защиту строений.

Строительные нормы и правила

Для установления и закрепления норм теплопотерь дома существуют своды правил (СП), нормы и правила (СНиП), применяемые при строительстве, и ГОСТ:

  • СП 131.13330.2012 – о строительной климатологии;
  • СП 50.13330.2010 – о тепловой защите зданий;
  • СП 60.13330.2012 – об отоплении, вентилировании и кондиционировании в зданиях воздуха.
  • СНиП 2.04.07-86* – о тепловых сетях;
  • СНиП 2.08.01-89* – о жилых зданиях;
  • СНиП 2.04.05-91* – об отоплении, вентилировании и кондиционировании.
  • ГОСТ 22270-76 – об оборудовании для кондиционирования, вентиляции и отопления;
  • ГОСТ 30494-2011 – о параметрах микроклимата в помещениях жилых и общественных зданий;
  • ГОСТ 31311-2005 – об отопительных приборах.

Данные энергетического паспорта МКД должны соответствовать вышеуказанной технической документации и быть в пределах регламентированных нормативов.

С какой целью определяют объем потерь тепла в жилом доме

Расчет объема тепловых потерь необходим для создания отопительных и вентиляционных систем, определенной мощности, во вновь возводимых строениях. В жилом МКД проведение энергоаудита позволит выявить излишки тепловых потерь, которые станут основанием для его капитального ремонта.

Расчет мощности системы отопления основан на теплопотерях всего здания. Теплоотдача радиаторов определяется с учетом потерь тепла помещения, где его планируется установить. Расчеты производят в наиболее холодное время года, при минимальных погодных температурах.

Перед строительством жилого дома расчет потенциальных потерь тепла позволяет выбрать характер и качество строительных материалов, опираясь на их характеристики и климатические условия. При таком подходе, расход тепла не увеличится, а строение будет прогреваться быстрее.

Основные места теплоотдачи в доме

Для выявления уровня тепловых потерь учитывают не только климатические условия местности, но и расположение здания по отношению к сторонам света. Комфорт людей зависит от конструктивных особенностей здания, качества утепления наружных стен, фасадной отделки.

При оценке объема уходящего тепла учитывают также следующие факторы:

  • Возможные теплопотери на инфильтрацию через «дышащие» стены, закрытые окна и двери.
  • Утечку теплого воздуха через внутренние ограждающие конструкции – стены, потолки, полы.
  • Теплопотери на вентиляцию. При ее размещении, рассчитывают объем вентилируемого воздуха.

На расчет теплопотерь через пластиковые окна также влияет количество в них стеклопакетов – чем их больше, тем ниже утечка.

Виды расчета потерь тепла в жилом доме

Рассчитать потери тепла в своей квартире или доме можно с помощью онлайн-программ расчета теплопотерь. Для каждой ограждающей конструкции (пола, стены, окна и т.п.) имеется отдельная графа, позволяющая по заданным параметрам определить примерное количество потерь и выявить уязвимые места.

Полученные данные будут точнее передавать информацию, чем расчет теплопотерь по укрупненным показателям теплопередачи, созданным в советские времена, для стандартных типовых проектов домов.

Произвести вычисления можно и с помощью теплотехнических калькуляторов, также доступных в интернете. Данные программы позволяют проверить теплоизоляционную толщину на соответствие нормативами, а также рассчитать требуемую ширину слоя теплоизоляции, исходя из их характеристик сопротивления теплоотдаче.

Существуют также программы-приложения для расчета теплопотерь дома, устанавливаемые на мобильные устройства. С их помощью можно на этапе внутренней отделки строящегося МКД подобрать элементы утепления квартиры, размеры радиаторов и т.п.

Для фактического определения утечки тепла можно использовать тепловизор. Это измерительный прибор, который используется для проверки проводимых строительных работ или для выявления уязвимых мест в старом доме, с целью последующего утепления.

Описание процесса расчета

Все программы и калькуляторы, подсчитывающие утечку тепла, основаны на существующих расчетных формулах в соответствии с правилами и нормативами. В рекомендуемом расчете теплопотерь дома, необходимо вводить параметры помещения или дома, в соответствующие графы.

Параметры, применяемые в расчетах

Для получения коэффициента, характеризующего потери тепла, необходимо учитывать следующие данные:

  • разницу внутренней и внешней температур;
  • объем воздуха в помещении;
  • способность ограждений (стен, потолка, окон и т.д.) удерживать тепло.

Последний показатель учитывает тепловое сопротивление стройматериала.

Формула и исходные данные для расчета

Упрощенная формула для расчета теплопотерь помещения выглядит следующим образом:

Q = S· T : R,

где Q – объем теплопотерь, S – объем помещения, T – разница между внешней и внутренней температурами, R – величина сопротивления утечки тепла материала.

Для подсчетов по формуле необходимо вводить следующие данные:

  • для вычисления объема (S) – метраж помещения и высоту потолков;
  • для установления разницы температур (T) – значения наружной и внутренней температур воздуха;
  • для определения (R) – типы материала фасада, наружных стен, стеклопакетов и т.д, а также их физические свойства.

При подсчете утечки тепла стоит понимать, что абсолютно все факторы не поддаются полному учету. Это и конструктивные ошибки, и внутри стеновой конденсат. Поэтому полученные данные лучше проверить экспериментальным путем.

Какие мероприятия планируют по результатам анализа теплопотерь

При выявлении тепло утечки принимают решение о капитальном ремонте здания. В целях энергосбережения утепляют наружные стены, монтируют более мощные и современные системы отопления. Устанавливают более качественные окна, с большим числом стеклопакетов, оказывающие тепловое сопротивление потерям. Однако чаще всего производят ремонт кровли, поскольку она является наиболее уязвимым местом для выхода тепла.

Если ваша семья, даже при наличии «теплых полов», оконных стеклопакетов, застекленной лоджии и современной входной двери, мерзнет – причину нужно искать в утечках теплового ресурса. Расчетные данные будут поводом для обращения в управляющую компанию и инициации соответствующих действий с ее стороны.

Расчёт теплопотерь частного дома с примерами

Помещения, в которых постоянно или временно находятся люди, должны сохранять определенную температуру соответственно санитарным нормам. Однако согласно законам физики, если за пределами здания температура отличается от той, что внутри помещений, система будет стремиться к равновесию, и помещение потеряет часть своего тепла. Иными словами, произойдут теплопотери, которые необходимо компенсировать за счет системы отопления. Давайте разберем, что это такое и какие расчеты нужно сделать, чтобы подобрать систему отопления.

Что такое теплопотери? Почему их нужно знать?

Теплопотери – это то количество тепла, которое теряют внутренние помещения через ограждающие перегородки, если температура за окном ниже той, которая должна поддерживаться внутри здания.

Необходимость расчета теплопотерь обусловлена задачей проектирования системы отопления, кондиционирования. От данного показателя зависит выбор климатической системы, мощности котельной, сечения труб, количества секций радиатора, применения системы теплый пол, других отопительных устройств.

Усредненные показатели имеет смысл использовать лишь тогда, когда к помещению не предъявляется строгих требований по поддержанию определенных постоянных температур. Остальные случаи, особенно когда речь идет о жилых, общественных строениях с постоянным пребыванием людей без верхней одежды, требуют произвести точный расчет показателя теплопотерь.

На сегодняшний день человечество озадачено проблемой рационального потребления ресурсов, особенно энергетических. Правильный расчет теплопотерь позволит определить наиболее рациональный путь организации системы отопления, чтобы помещение прогревалось до комфортной температуры, при этом энергопотребление не было избыточным.


Как уменьшить теплопотери и экономить на отоплении

Экономия на энергоресурсах приобретает все большую значимость. И не только потому, что частные дома в последнее время все больше по площади, следовательно, и по теплопотерям. Главная причина в том, что на правительственном уровне нам обещают цены на энергоносители в скором будущем такие же, как в Европе.

А там занимаются экономией энергии весьма тщательно… Вводят законы направленные на энергосбережение, например предусматривающие строительство лишь энергоэкономичных домов и применение только конденсационных котлов (с вторичным теплообменником)…

Следовательно, в нашем климате вопрос энергосбережения должен стать еще более существенным, чем в странах запада. Отсюда задача строить действительно энергосберегающий дом уже сейчас. Или добиваться таких качеств путем проведения ремонта. Что нужно сделать для лучшей экономии тепла?

Как нормативы регламентируют теплопотери

Окна, двери, крыша, стены…. — все это ограждающие конструкции. У каждой из них свое сопротивление теплопередаче. Через каждую проходит какое-то количество тепла, которое зависит от указанного сопротивления, площади, разности температур и др.

Нормативом регламентируется для каждой ограждающих конструкций дома определенное сопротивление теплопередаче, в зависимости от количества градусо-суток, т.е. от региона проживания.

Также указываются максимальные возможные удельные теплопотери за отопительный сезон.

При этом в нормативе указывается, что сопротивление теплопередаче отдельных ограждающих конструкций могут быть ниже требований, если это целесообразно экономически, но суммарные теплопотери при этом не должны превышать нормативных.

В каждом конкретном случае предлагается проверять экономическую целесообразность тех или иных решений по теплосбережению, и отыскивать наиболее экономичное решение в зависимости от региона, цен на топливо и др.

Подробней как влияет стоимость топлива на выбор утепления

Теплые стены целесообразно не утеплять

Действительно, зачастую доутеплять стены, которые «теплые» сами по себе, до нормативных требований, весьма затратно. Например, однослойная стена из поризованной керамики может иметь сопротивление теплопередаче немногим меньше чем нормативное значение.

Доутепление слоем минеральной ваты толщиной 3 — 5 см потребует больших дополнительных затрат, уменьшит надежность, долговечность конструкции. Чем лучше однослойные стены из теплых материалов

Оказывается, что экономически выгодней в данном проекте достичь требований по энергопотерям оптимизацией вентиляции, и применением энергосберегающих стекол, например. Но на практике подобное решение игнорируют, и эту экономическую выгоду упускают. Почему?

Простые проекты

Проекты сейчас в основном делаются исходя из требований нормативов относительно сопротивления теплопередаче ограждающих конструкций. Такой проект сделать намного проще. Усложнять расчеты энергопотерями, которые происходят по разным причинам, многие не хотят, или не могут. Поэтому энергосберегающие мероприятия и экономическая целесообразность в полной мере не просчитываются.

Какие мероприятия по теплосбережению могут быть разработанными в проектах, и реализовываться на практике?

Меры по снижению теплопотерь

  • Увеличивать сопротивление теплопередаче конструкций. В первую очередь тех, которые выгодней утеплять. Например, если стены достаточно теплые, то дешевле с большим эффектом увеличить толщину утеплителя в кровле над мансардой, в полу, а также установить более энергосберегающие окна. Но у конкретного проекта, могут быть свои решения.
  • Рассмотреть возможность строительства одноэтажного дома вместо двухэтажного. У двухэтажных на 10% больше потерь тепла при прочих равных обстоятельствах.
  • Упростить форму здания, приблизить ее к правильному четырехугольнику, убрать навесные элементы, контактирующие с несущими ограждающими конструкциями. «Лишние » углы дают увеличение утечек тепла от 3%.
  • Применять «теплые» окна, защищенные снаружи рольставнями.
  • Предусмотреть современную автоматизированную вентиляционную систему с фиксированным количеством воздуха, и рекуперацией тепла.
  • Применить рекуперацию тепла канализационных стоков.
  • Запроектировать пристройку к наружным стенам других неотапливаемых помещений, — летней кухни, веранды, закрытой террасы, гаража, мастерской, склада…
  • Стремиться запроектировать максимальную площадь остекления с южной стороны. Чтобы нивелировать нагрев летом, предусмотреть дополнительные меры, например, затеняющий сад с опадающей листвой. жалюзи, карнизы.
  • Применить эффективные приемы отопления, — теплый пол с конденсационным котлом, программируемое регулирование температуры для каждой комнаты. Снижение температуры на 2 градуса экономит не менее 5% энергоносителя.

Важность вентиляции

Существенные теплопотери могут быть не только за счет непосредственной передачи тепла от предмета к предмету. Но и за счет выноса теплого воздуха вместе с вентиляцией, потерей энергии со сливаемой горячей водой, вследствие ухода лучевой энергии через стекла, обдувом (усиленным теплообменом) ветром…

Если ограждающие конструкции будут иметь требуемое сопротивление теплопередаче, то все равно, дом может терять энергию в гораздо большем количестве, чем это указано в нормативе.

Выход только в комплексном подходе к теплосбережению. Вопросу вентиляции помещения нужно придать столько же важности, как и вопросу утепления.

Подбор проекта и комплексное теплосбережение

Стремление достичь значительного теплосбережения для всего здания с помощью полного устранения одной части теплопотерь, при игнорировании других, приведет лишь к повышенным затратам на такие мероприятия. Например, наращивание толщины утеплителя на стене, в кровле, под полом, свыше обычных нормативных значений, значительно дороже.

Важно найти такой проект дома, где вопрос энергосбережения рассматривался бы в комплексе, а не только как утепление ограждающих конструкций.

Подбору такого проекта и соответствующих специалистов-строителей нужно уделить максимум усилий.

Воздухообменом может удаляться половина генерируемого в доме тепла. Вопрос не только в наличии сквозняков, но и главным образом, — в неконтролируемой вытяжной вентиляции.

Зимой естественная тяга значительно увеличивается за счет разницы температур, этому значительно может способствовать ветер. Решить вопрос можно только созданием регулируемой вентиляции, при достаточно низкой воздухопроницаемости всех конструкций. Подробней о вопросе создания вентиляции в доме

Укрупненный расчет

Выше описана методика точного подсчета теплопотерь, однако далеко не все используют данную формулу, зачастую обыватели довольствуются усредненными данными, уже посчитанными для помещения высотой потолков до 3 метров. Укрупненный расчет производят исходя из значения 100 Вт/1 квадратный метр помещения. Соответственно дома площадью 100 м2 необходимо обеспечить отопительную систему мощностью примерно 10 000 Вт.

Подобные расчеты являются достаточно усредненными. Учитывая, что в нашей стране большая вариативность климатических зон, использовать такой расчет нецелесообразно. При недостаточной мощности, дом не будет достаточно хорошо прогреваться, а при избыточной — ресурсы будут расходоваться впустую.

Дифференцированные схемы расчёта

Простейший способ установить размер тепловых потерь здания — суммировать значения теплового потока через конструкции, которыми это здание образовано. Такая методика полностью учитывает разницу в структуре различных материалов, а также специфику теплового потока сквозь них и в узлах примыкания одной плоскости к другой. Такой дихотомический подход сильно упрощает задачу, ведь разные ограждающие конструкции могут существенно отличаться в устройстве систем теплозащиты. Соответственно, при раздельном исследовании определить сумму теплопотерь проще, ведь для этого предусмотрены различные способы вычислений:

  • Для стен утечки теплоты количественно равны общей площади, умноженной на отношение разницы температур к тепловому сопротивлению. При этом обязательно берётся во внимание ориентация стен по сторонам света для учёта их нагрева в дневное время, а также продуваемость строительных конструкций.
  • Для перекрытий методика та же, но при этом учитывается наличие чердачного помещения и режим его эксплуатации. Также за комнатную температуру принимается значение на 3–5 °С выше, расчётная влажность тоже увеличена на 5–10%.
  • Теплопотери через пол рассчитывают зонально, описывая пояса по периметру здания. Связано это с тем, что температура грунта под полом выше у центра здания по сравнению с фундаментной частью.
  • Тепловой поток через остекление определяется паспортными данными окон, также нужно учитывать тип примыкания окон к стенам и глубину откосов.

Q = S · (ΔT / Rt)

где:

  • Q —тепловые потери, Вт;
  • S — площадь стен, м2;
  • ΔT — разница температур внутри и снаружи помещения, ° С;
  • Rt — сопротивление теплопередаче, м2·°С/Вт.

Общие сведения по результатам расчетов

  • Теплопотери помещения
  • — Общее количество тепла, измеряемое в Ваттах, которое теряет расчетное помещение в единицу времени через ограждающие конструкции.

  • Удельные теплопотери помещения
  • — Теплопотери помещения отнесенные к его площади

  • Температура воздуха наиболее холодных суток
  • Температура воздуха наиболее холодной пятидневки
  • Продолжительность отопительного сезона
  • Средняя температура воздуха отопительного сезона

Для более точного расчета обязательно обратитесь к квалифицированным специалистам в вашем регионе!

Калькулятор работает в тестовом режиме.

Информация по назначению калькулятора

Калькулятор теплопотерь предназначен для расчета примерного количества тепла, теряемого помещением через ограждающие конструкции в единицу времени в самую холодную пятидневку выбранного населенного пункта (по актуализированной редакции СП 131.13330.2012).

Информация актуальна на 2020 год.

Данные расчеты являются достаточно приблизительными, так как невозможно учесть абсолютно все факторы, влияющие на тепловые потери, а полученные результаты необходимо проверять экспериментально, для подтверждения расчетов. Ошибки в конструкции стен так же могут значительным образом повлиять на фактические теплопотери. Например, образование конденсата внутри стеновой конструкции может значительно увеличить теплопроводность теплоизолирующего материала в зимний период.

Также на общие теплопотери влияют разность наружной и внутренней температур, солнечная радиация, атмосферные осадки, ветра и другие факторы. Моделирование процессов тепловых потерь целого здания является актуальной проблемой. Зная теплопотери здания, можно переходить к выбору мощности и вариантов системы отопления.

Для снижения тепловых потерь здания необходимо использовать максимально эффективные теплоизоляционные материалы. Особенно стоит уделить внимание кровле, так как именно через нее наружу уходит наибольшее количество тепла из помещения. Для поддержания комфортного внутреннего микроклимата, а так же снижения финансовых затрат на отопление, необходимо соблюдать правильный баланс утепления всех ограждающих конструкций.

Примерное минимальное качество утепления наружных стен

  • Хорошее:
  • ~ 300 мм Дерево + 100 мм Полистирол/Каменная Вата

    ~ 500 мм Газо- и пенобетон

    ~ 300 мм Газо- и пенобетон + 100 мм Полистирол/Каменная Вата

    ~ 400 мм Керамзитобетон + 100 мм Полистирол/Каменная Вата

    ~ 250 мм Кирпич + 200 мм Полистирол/Каменная Вата

  • Среднее:
  • ~ 300 мм Дерево + 50 мм Полистирол/Каменная Вата

    ~ 400 мм Газо- и пенобетон

    ~ 300 мм Газо- и пенобетон + 50 мм Полистирол/Каменная Вата

    ~ 200 мм Керамзитобетон + 100 мм Полистирол/Каменная Вата

    ~ 250 мм Кирпич + 100 мм Полистирол/Каменная Вата

  • Плохое:
  • ~ 200 мм Дерево

    ~ 200 мм Газо- и пенобетон

    ~ 100 мм Газо- и пенобетон + 120 мм Кирпич

    ~ 300 мм Керамзитобетон

    ~ 250 мм Кирпич

Расчет теплопотерь дома — эффективное отопление

В начале любого серьезного проектирования отопительной системы должен идти расчет теплопотерь здания.

Актуальность этого вопроса настолько высокая, что в строительных нормах и правилах существует целый раздел, посвященный ему, — СНиП II-3-79* «Строительная теплотехника».

Под теплопотерями подразумевают выход энергии в виде тепла из здания сквозь окна, двери, стены, вентиляцию и другие конструкции. Согласно СНиП, чтобы сократить потребление тепла зимой и работу вентиляции летом, жилые и коммерческие здания следует проектировать и строить, предусматривая следующие аспекты:

  • заключение объемно-планировочных решений должно проводиться, учитывая обеспечение минимальной площади ограждающих конструкций;
  • световые проемы должны быть должным образом защищены от солнца; для этого учитывается коэффициент теплопропускания солнцезащитных устройств;
  • необходимо использовать теплоизоляционные материалы при строительстве, делая рациональный выбор в пользу более эффективных из них;
  • световые проемы должны иметь нормированную площадь, согласно коэффициенту естественной освещенности;
  • все возможные щели и притворы должны быть тщательно заделаны во избежание потерь тепла.

ружающей среде, на улицу. Тепловой расчет проводится для того, чтобы определить, есть ли недостатки или даже избытки тепла, компенсация которых происходит за счет установки систем отопления и вентиляции соответственно. Если же тепловой режим в помещении всегда постоянный во времени, тогда должен присутствовать тепловой баланс.

Баланс тепла — явление, которое достигается в абсолютно любой системе, даже при отсутствии отопления и вентиляции. Так, если здание не будет отапливаться, тепловой баланс установится, но на более низких температурах (либо на более высоких летом), которые будут неудобными человеку. Отопление же и вентиляция позволяют сдвинуть температурные значения баланса к требуемой величине.

Проводя тепловой расчет, необходимо также учитывать все источники поступления тепла, среди которых выделяют следующие:

  • система отопления;
  • работающие электроприборы;
  • человек;
  • осветительное оборудование;
  • кухонная плита;
  • солнечный свет.

Тепловыделения от человека

Нагрузка

Пример

Мощность тепловыделения Вт.

Сидя

Кино, театр, кафе

100

Сидячая работа

Работа за компьютером, Контрольная в школе

120

Офисная работа

Ресепшн, кассир, секретарь

130

Стоячая работа

В лаборатории, продавец-консультант

130

Прогулка

Хождение по корридорам

150

Умеренная нагрузка

Официант, парикмахер

160

Работа на конвеере

Механическое производство

220

Современные танцы

Вечеринка, отдых в клубе

250

Быстрая ходьба

Прогулка в горах

300

Тяжелая работа

Атлетика, работа грузчика

430

Зимой более актуальными являются потери тепла, которые происходят через следующие источники: 

  • окна и двери;
  • стены;
  • пол;
  • крыша;
  • вентиляция.

Определение прикидочных теплопотерь по объему помещения, Вт/м3

Постройки

Количество наружных перегородок

Назначение помещений

Старые окна

Современные окна

Ванная комната

Котельная

Современные

1

30

25

50

23

2

37

35

60

3

50

40

Старые

1

40

33

65

30

2

48

45

80

3

65

52

 

Чтобы провести примерный, ориентировочный расчет теплопотерь здания, а также требуемое количество тепла, учитывают следующее:

  • дома, построенные по новым технологиям с использованием утеплителей требуют 60-70 Вт/м2 тепла;
  • для более старых зданий мощность системы отопления должна быть несколько выше — 100 Вт/м2.

Также расчет теплопотерь ориентировочно проводят не только по площади, но и объему (табл. 3.2), чтобы узнать требуемую мощность отопительных приборов.

Калькулятор потерь тепла

| Калькулятор БТЕ

Вы можете использовать этот калькулятор тепловых потерь, чтобы оценить мощность обогревателя, необходимую для поддержания комфортной температуры в вашей комнате. Из текста вы узнаете, как рассчитать теплопотери и что такое калькулятор отопления BTU.

Зачем нужны системы отопления?

Все материалы проводят тепло. Вы можете согреть свое место до комфортной температуры, но пока температура на улице ниже, в вашем доме будет холоднее.Поток тепла из более теплого места в более холодное практически невозможно остановить, независимо от того, насколько качественные изоляционные материалы вы найдете. Чтобы компенсировать потерю, нам необходимо подавать энергию с постоянной скоростью. Эта мощность — мощность нагревателя, который поможет вам вычислить этот калькулятор.

Что влияет на теплопотери?

Потери тепла — это эффект теплопередачи (в ваттах) изнутри наружу. На теплопередачу влияют три фактора:

  1. Площадь поверхности, через которую проходит тепло
  2. материал
  3. разница температур

Первый пункт прост: чем больше поверхность, тем больше тепла может передаваться одновременно.Второй момент касается характеристик материалов. Материалы, используемые в конструкции, должны соответствовать определенным стандартам. Помимо прочего, это означает, что они должны обладать особыми свойствами в отношении теплопередачи. Общей характеристикой является коэффициент теплопередачи, также называемый U-значением. Он определяет передачу тепла через один квадратный метр материала, деленную на разницу температур. Например, кирпичная стена размером 11 дюймов может иметь U порядка 1 Вт / (м · К), тогда как стандартное окно может иметь значение U в пять раз больше.Последний фактор — разница температур. Тепло течет только между областями с разной температурой, поэтому, если температура одинакова, потока тепла нет. Обычно теплопередача пропорциональна разнице температур.

Как рассчитать теплопотери?

Чтобы вычислить теплопотери, нам нужно просуммировать теплопотери по всем поверхностям комнаты и учесть различные характеристики материалов, используемых в конструкции. Общие потери тепла складываются из потерь через стены, пол и потолок.Мы вычисляем потери через одну поверхность по формуле:

Heat_loss = Площадь * U-значение ,

где

  • Площадь — площадь поверхности,
  • U-значение — U-значение материала.

Потери тепла через стены можно оценить следующим образом. В первую очередь следует указать тип утеплителя. В нашем калькуляторе предусмотрено 3 варианта:

  • без дополнительной изоляции: сплошная кирпичная стена толщиной 9 дюймов, коэффициент теплопроводности = 2,2 Вт / (м² · К)
  • посредственная изоляция: пустотелая стена толщиной 11 дюймов, коэффициент U = 1.0 Вт / (м² К)
  • очень хорошо изолирован: полая стена толщиной 11 дюймов с дополнительной изоляцией, коэффициент теплопроводности = 0,6 Вт / (м² · К)

При желании в расширенном режиме вы можете установить значение U вручную.

Нам также нужно знать общую площадь стен. Однако следует учитывать только внешние стены. Наконец, в расширенном режиме вы можете выбрать количество окон и внешних дверей. Через них теряется большое количество тепла. Мы установили коэффициент теплопроводности окон 2,5 Вт / (м² K) и внешних дверей 2,4 Вт / (м² K) .

В нашем калькуляторе мы учитываем теплопотери через пол, только если это первый этаж. Значение U составляет 1 Вт / (м² · К) . Точно так же мы учитываем потери тепла через потолок, только если комната находится на верхнем этаже. Коэффициент теплопроводности потолка составляет 0,7 Вт / (м² K) .

Калькулятор теплопотерь

Чтобы воспользоваться калькулятором теплопотерь и определить мощность обогревателя, вам необходимо указать размеры вашей комнаты, указать, на каком этаже она находится и какой тип изоляции имеют стены.Если вы не уверены, какой тип изоляции выбрать, выбирайте изоляцию худшего качества. Безопаснее быть пессимистом. Наконец, вы также должны указать, сколько у вас внешних стен. В расширенном режиме вы также можете указать количество окон и дверей. Имея эту информацию, мы можем вычислить потери тепла (в ваттах, разделенных на разницу температур). Зная теплопотери, мы можем оценить мощность обогревателя. Последняя часть необходимой информации — это разница температур внутри (внутренняя температура) и снаружи (температура окружающей среды).Внутренняя температура зависит от вашего комфорта. Температура окружающей среды должна быть минимальной температурой в вашем регионе.

Калькулятор БТЕ

В некоторых местах по всему миру для указания мощности системы отопления чаще используется BTU (британская тепловая единица) в час вместо ватт. Если вам интересно, сколько BTU мне нужно, вы можете легко изменить с ватт на BTU в час в нашем калькуляторе.

Температура в помещении для расчета теплопотерь и теплопроизводительности систем лучистого отопления в сочетании с системами механической вентиляции

Основные моменты

В качестве объекта исследования было выбрано типичное офисное помещение с гибридной системой.

Была предложена действующая модель для прогнозирования температуры в помещении.

Были определены формулы для расчета температуры в помещении.

Изучалось влияние нагреваемой поверхности и холодного приточного воздуха на температуру в помещении.

При расчетах следует учитывать как нагретую поверхность, так и холодный приточный воздух.

Реферат

В этом исследовании в качестве объекта исследования было выбрано типичное офисное помещение с системой лучистого отопления и системой механической вентиляции.Формулы температуры в помещении для расчета теплопотерь помещения (включая теплопотери при передаче и тепловые потери на вентиляцию) и теплопроизводительность гибридной системы были определены в соответствии с принципом теплопередачи. Была предложена модель для прогнозирования температуры в помещении, и было определено, что прогнозируемая температура в помещении хорошо согласуется с измеренными данными. С использованием предложенной модели был проведен качественный анализ влияния температуры нагретой поверхности и скорости воздухообмена на температуру в помещении.Когда температура нагретой поверхности и скорость воздухообмена составляли от 21,0 до 29,0 ° C и от 0,5 до 4,0 ч −1 , температура в помещении для расчета теплопотерь на передачу и тепловых потерь вентиляции составляла от 20,0 до 20,3 ° C и от 19,6 до 20,5 ° C, соответственно, а температура в помещении для расчета теплопроизводительности гибридной системы составляла от 18,2 до 19,8 ° C. Соответственно, относительные ошибки вычислений составляли от 0,3% до 0,5% и от -10,2% до 11,8% для расчета потерь тепла при передаче и тепловых потерь при вентиляции, соответственно, и между 16.0% и 17,4% для расчета теплопроизводительности гибридной системы. Из-за больших относительных ошибок расчетов необходимо учитывать влияние обогреваемой поверхности и холодного приточного воздуха на температуру в помещении для расчета тепловых потерь вентиляции и теплопроизводительности систем лучистого отопления в сочетании с системами механической вентиляции.

Ключевые слова

Система лучистого отопления

Система механической вентиляции

Температура в помещении

Потери тепла в помещении

Теплопроизводительность

Рекомендуемые статьиЦитирующие статьи (0)

Полный текст

Copyright © 2015 Elsevier B.V. Все права защищены.

Рекомендуемые статьи

Цитирующие статьи

Курсы PDH Online. PDH для профессиональных инженеров. ПДХ Инжиниринг.

«Мне нравится широта ваших курсов по HVAC; не только экологичность или экономия энергии

курсов. «

Russell Bailey, P.E.

Нью-Йорк

«Он укрепил мои текущие знания и научил меня еще нескольким новым вещам

, чтобы познакомить меня с новыми источниками

информации.»

Стивен Дедак, П.Е.

Нью-Джерси

«Материал был очень информативным и организованным. Я многому научился, и они были

.

очень быстро отвечает на вопросы.

Это было на высшем уровне. Будет использовать

снова. Спасибо. «

Blair Hayward, P.E.

Альберта, Канада

«Простой в использовании сайт.Хорошо организовано. Я действительно буду снова пользоваться вашими услугами.

проеду по вашей роте

имя другим на работе. «

Roy Pfleiderer, P.E.

Нью-Йорк

«Справочные материалы были превосходными, а курс был очень информативным, особенно потому, что я думал, что я уже знаком.

с деталями Канзас

Городская авария Хаятт.»

Майкл Морган, P.E.

Техас

«Мне очень нравится ваша бизнес-модель. Мне нравится просматривать текст перед покупкой. Я нашел класс

.

информативно и полезно

на моей работе »

Вильям Сенкевич, П.Е.

Флорида

«У вас большой выбор курсов, а статьи очень информативны.Вы

— лучшее, что я нашел ».

Russell Smith, P.E.

Пенсильвания

«Я считаю, что такой подход позволяет работающему инженеру легко зарабатывать PDH, давая время на просмотр

материал «

Jesus Sierra, P.E.

Калифорния

«Спасибо, что разрешили мне просмотреть неправильные ответы.На самом деле

человек узнает больше

от отказов »

John Scondras, P.E.

Пенсильвания

«Курс составлен хорошо, и использование тематических исследований является эффективным.

способ обучения »

Джек Лундберг, P.E.

Висконсин

«Я очень впечатлен тем, как вы представляете курсы; i.э., позволяя

студент для ознакомления с курсом

материалов до оплаты и

получает викторину «

Arvin Swanger, P.E.

Вирджиния

«Спасибо за то, что вы предложили все эти замечательные курсы. Я определенно выучил и

получил огромное удовольствие «

Mehdi Rahimi, P.E.

Нью-Йорк

«Я очень доволен предлагаемыми курсами, качеством материалов и простотой поиска.

в режиме онлайн

курсов.»

Уильям Валериоти, P.E.

Техас

«Этот материал в значительной степени оправдал мои ожидания. По курсу было легко следовать. Фотографии в основном обеспечивали хорошее наглядное представление о

обсуждаемых тем ».

Майкл Райан, P.E.

Пенсильвания

«Именно то, что я искал. Потребовался 1 балл по этике, и я нашел его здесь.»

Джеральд Нотт, П.Е.

Нью-Джерси

«Это был мой первый онлайн-опыт получения необходимых мне кредитов PDH. Это было

информативно, выгодно и экономично.

Я очень рекомендую

всем инженерам »

Джеймс Шурелл, П.Е.

Огайо

«Я понимаю, что вопросы относятся к« реальному миру »и имеют отношение к моей практике, и

не на основании какой-то неясной секции

законов, которые не применяются

до «нормальная» практика.»

Марк Каноник, П.Е.

Нью-Йорк

«Отличный опыт! Я многому научился, чтобы использовать свой медицинский прибор.

организация. «

Иван Харлан, П.Е.

Теннесси

«Материалы курса имели хорошее содержание, не слишком математическое, с хорошим акцентом на практическое применение технологий».

Юджин Бойл, П.E.

Калифорния

«Это был очень приятный опыт. Тема была интересной и хорошо изложенной,

а онлайн-формат был очень

доступный и простой

использовать. Большое спасибо «.

Патрисия Адамс, P.E.

Канзас

«Отличный способ добиться соответствия требованиям PE Continuing Education в рамках ограничений по времени лицензиата.»

Joseph Frissora, P.E.

Нью-Джерси

«Должен признаться, я действительно многому научился. Помогает напечатанная викторина во время

обзор текстового материала. Я

также оценил просмотр

фактических случаев «

Жаклин Брукс, П.Е.

Флорида

«Документ» Общие ошибки ADA при проектировании объектов «очень полезен.Модель

испытание потребовало исследований в

документ но ответов

в наличии »

Гарольд Катлер, П.Е.

Массачусетс

«Я эффективно использовал свое время. Спасибо за широкий выбор вариантов

в транспортной инженерии, что мне нужно

для выполнения требований

Сертификат ВОМ.»

Джозеф Гилрой, П.Е.

Иллинойс

«Очень удобный и доступный способ заработать CEU для моих требований PG в Делавэре».

Ричард Роудс, P.E.

Мэриленд

«Я многому научился с защитным заземлением. Пока все курсы, которые я прошел, были отличными.

Надеюсь увидеть больше 40%

курсов со скидкой.»

Кристина Николас, П.Е.

Нью-Йорк

«Только что сдал экзамен по радиологическим стандартам и с нетерпением жду возможности сдать еще

курсов. Процесс прост, и

намного эффективнее, чем

в пути «.

Деннис Мейер, P.E.

Айдахо

«Услуги, предоставляемые CEDengineering, очень полезны для профессионалов

Инженеры получат блоки PDH

в любое время.Очень удобно ».

Пол Абелла, P.E.

Аризона

«Пока все отлично! Поскольку я постоянно работаю матерью двоих детей, у меня мало

время исследовать где на

получить мои кредиты от. «

Кристен Фаррелл, П.Е.

Висконсин

«Это было очень познавательно и познавательно.Легко для понимания с иллюстрациями

и графики; определенно делает это

проще поглотить все

теорий. «

Виктор Окампо, P.Eng.

Альберта, Канада

«Хороший обзор принципов работы с полупроводниками. Мне понравилось пройти курс по

.

мой собственный темп во время моего утро

метро

на работу.»

Клиффорд Гринблатт, П.Е.

Мэриленд

«Просто найти интересные курсы, скачать документы и взять

викторина. Я бы очень рекомендовал

вам на любой PE, требующий

CE единиц. «

Марк Хардкасл, П.Е.

Миссури

«Очень хороший выбор тем из многих областей техники.»

Randall Dreiling, P.E.

Миссури

«Я заново узнал то, что забыл. Я также рад оказать финансовую помощь

по ваш промо-адрес который

сниженная цена

на 40% «

Конрадо Казем, П.E.

Теннесси

«Отличный курс по разумной цене. Воспользуюсь вашими услугами в будущем».

Charles Fleischer, P.E.

Нью-Йорк

«Это был хороший тест и фактически подтвердил, что я прочитал профессиональную этику

коды и Нью-Мексико

правил. «

Брун Гильберт, П.E.

Калифорния

«Мне очень понравились занятия. Они стоили потраченного времени и усилий».

Дэвид Рейнольдс, P.E.

Канзас

«Очень доволен качеством тестовых документов. Буду использовать CEDengineerng

при необходимости дополнительных

аттестат. «

Томас Каппеллин, П.E.

Иллинойс

«У меня истек срок действия курса, но вы все же выполнили свое обязательство и дали

мне то, за что я заплатил — много

оценено! «

Джефф Ханслик, P.E.

Оклахома

«CEDengineering предлагает удобные, экономичные и актуальные курсы.

для инженера »

Майк Зайдл, П.E.

Небраска

«Курс был по разумной цене, а материал был кратким и

в хорошем состоянии »

Glen Schwartz, P.E.

Нью-Джерси

«Вопросы подходили для уроков, а материал урока —

.

хороший справочный материал

для деревянного дизайна. «

Брайан Адамс, П.E.

Миннесота

«Отлично, я смог получить полезные рекомендации по простому телефонному звонку.»

Роберт Велнер, P.E.

Нью-Йорк

«У меня был большой опыт работы в прибрежном строительстве — проектирование

корпус курс и

очень рекомендую

Денис Солано, P.E.

Флорида

«Очень понятный, хорошо организованный веб-сайт. Материалы курса этики Нью-Джерси были очень хорошими

хорошо подготовлен. «

Юджин Брэкбилл, П.Е.

Коннектикут

«Очень хороший опыт. Мне нравится возможность загружать учебные материалы на номер

.

обзор везде и

всякий раз, когда.»

Тим Чиддикс, P.E.

Колорадо

«Отлично! Сохраняю широкий выбор тем на выбор».

Уильям Бараттино, P.E.

Вирджиния

«Процесс прямой, без всякой ерунды. Хороший опыт».

Тайрон Бааш, П.E.

Иллинойс

«Вопросы на экзамене были зондирующими и продемонстрировали понимание

материала. Полная

и комплексное »

Майкл Тобин, P.E.

Аризона

«Это мой второй курс, и мне понравилось то, что мне предложили этот курс

поможет по моей линии

работ.»

Рики Хефлин, П.Е.

Оклахома

«Очень быстро и легко ориентироваться. Я обязательно воспользуюсь этим сайтом снова».

Анджела Уотсон, П.Е.

Монтана

«Легко выполнить. Никакой путаницы при прохождении теста или записи сертификата».

Кеннет Пейдж, П.E.

Мэриленд

«Это был отличный источник информации о солнечном нагреве воды. Информативный

и отличный освежитель ».

Luan Mane, P.E.

Conneticut

«Мне нравится подход к регистрации и возможность читать материалы в автономном режиме, а затем

вернуться, чтобы пройти викторину «

Алекс Млсна, П.E.

Индиана

«Я оценил объем информации, предоставленной для класса. Я знаю

это вся информация, которую я могу

использование в реальных жизненных ситуациях »

Натали Дерингер, P.E.

Южная Дакота

«Обзорные материалы и образец теста были достаточно подробными, чтобы позволить мне

успешно завершено

курс.»

Ира Бродский, П.Е.

Нью-Джерси

«Веб-сайтом легко пользоваться, вы можете скачать материал для изучения, а потом вернуться

и пройдите викторину. Очень

удобно а на моем

собственный график «

Майкл Гладд, P.E.

Грузия

«Спасибо за хорошие курсы на протяжении многих лет.»

Деннис Фундзак, П.Е.

Огайо

«Очень легко зарегистрироваться, получить доступ к курсу, пройти тест и распечатать PDH

Сертификат

. Спасибо за изготовление

процесс простой. »

Fred Schaejbe, P.E.

Висконсин

«Опыт положительный.Быстро нашел курс, который соответствовал моим потребностям, и прошел

одночасовое PDH в

один час. «

Стив Торкильдсон, P.E.

Южная Каролина

«Мне понравилось загружать документы для проверки содержания

и пригодность, до

имея для оплаты

материал

Ричард Вимеленберг, P.E.

Мэриленд

«Это хорошее напоминание об EE для инженеров, не занимающихся электричеством».

Дуглас Стаффорд, П.Е.

Техас

«Всегда есть возможности для улучшения, но я ничего не могу придумать в вашем

.

процесс, требующий

улучшение.»

Thomas Stalcup, P.E.

Арканзас

«Мне очень нравится удобство участия в викторине онлайн и получение сразу

Сертификат

. «

Марлен Делани, П.Е.

Иллинойс

«Учебные модули CEDengineering — это очень удобный способ доступа к информации по номеру

.

много разные технические зоны за пределами

своя специализация без

надо путешествовать.»

Hector Guerrero, P.E.

Грузия

Расчет тепловых потерь

15 15 1,2 15 151,167 15 1,215 15 1,88 15 1,788 15 1,788 15 1,78 2,575
DELTA T (Повышение температуры за пределами окружающей среды) — выберите один из ниже
КОЭФФИЦИЕНТ ИЗОЛЯЦИИ — выберите один из ниже 5 10 15 25 20 20 30 35 40 45 50 55 60 65 70 75 80 85 90 ИНН 0.970 0,195 0,292 0,389 0,486 0,584 0,681 0,778 0,876 0,973 1,070 1,167 1.751

M

U

L

T

I

P

L

I

E

R

IN107 0,215 0,322 0,429 0,536 0,644 0,751 0,858 0,966 1,073 1,180 1,288 1,931
ЧАСТИЧНО ИЗОЛИРОВАННАЯ 0,143 0,286 0,429 0,573 0,715 0,858 1.001 1,144 1,283 1,431 1,574 1,717 1,860 2,003 2,146 2,289 2,432 2,575 2,575 0,715 0,894 1,073 1,252 1,431 1,609 1,788 1,967 2,146 2,325 2.503 2,682 2,861 3,040 3,219
БЕЗ ИЗОЛИРОВАННОЙ 0,286 0,572 0,858 2,861 3,147 3,433 3,719 4,010 4,292 4,578 4,864 5,150
98215 98215 98215 98215 98215 98215 98215 98215
915 ТАБЛИЦА ВЫШЕ 915 82
1.ОПРЕДЕЛИТЬ КУБИЧЕСКИЕ НОГИ ОТОПЛЕННОГО ПОМЕЩЕНИЯ (ДЛИНА X ШИРИНА X ВЫСОТА ПОТОЛКА ПОМЕЩЕНИЯ)

2. ОПРЕДЕЛИТЕ ДЕЛЬТА T (превышение температуры наружного воздуха или дополнительное повышение температуры)
3. ВЫБЕРИТЕ КАТЕГОРИЮ ИЗОЛЯЦИИ ВЫШЕ.
4. ПЕРЕЙДИТЕ К СТОЛБЕ С СООТВЕТСТВУЮЩЕЙ ДЕЛЬТОЙ T.
5. ПРИНИМАЙТЕ МУЛЬТИПЛИКАТОР X КУБИЧЕСКИМИ НОЖКАМИ, И ОТВЕТИТЕ О ПРИБЛИЗИТЕЛЬНОЙ ВЛАЖНОСТИ.
6. ЧТОБЫ РАСЧЕТАТЬ ЭКВИВАЛЕНТ БТЕ / Ч, УМНОЖИТЕ ВОДУ НА 3,412.
ПРИМЕР: Необходимо обогреть пространство объемом 800 кубических футов. Минимальная температура наружного воздуха составляет 0 F. Целью является комфортная температура 70 F. В этом примере Delta T составляет 70 F. Помещение характеризуется как изолированное.800 кубических футов следует умножить на коэффициент сверху, который в данном случае будет 1,503. В результате получается 1202,4 Вт. Таким образом, любая конструкция, будь то обогреватель плинтуса, настенный обогреватель и т. Д., Будет подходящим выбором, если номинальная мощность равна или превышает это значение.

















Расчет охлаждающей нагрузки — холодильная камера

Расчет охлаждающей нагрузки

Расчет охлаждающей нагрузки для холодильных камер.В этой статье мы рассмотрим, как рассчитать охлаждающую нагрузку для холодного помещения. Сначала мы рассмотрим источники тепла, а затем рассмотрим рабочий пример того, как выполнить расчет охлаждающей нагрузки холодильной камеры в упрощенном примере. Прокрутите вниз, чтобы просмотреть видеоурок.

Нужна бесплатная программа для расчета холодильной камеры?
Загрузите Coolselector®2 бесплатно -> Щелкните здесь
С Danfoss вы можете построить устойчивые и эффективные холодильные камеры. Их широкий спектр продуктов и передовой опыт применения на рынке позволяют вам думать наперед и соответствовать будущим нормам по хладагентам и энергопотреблению.Экологичность и опережайте конкурентов без ущерба для производительности
.

Узнайте больше о решениях для холодной комнаты здесь

Что такое холодная камера?

Холодильная камера используется для хранения скоропортящихся продуктов, таких как мясо и овощи, чтобы замедлить их порчу и сохранить их как можно дольше свежими. Тепло ускоряет их порчу, поэтому продукты охлаждаются за счет отвода тепла.

Для отвода тепла мы используем систему охлаждения, поскольку это позволяет точно и автоматически контролировать температуру, чтобы сохранить товары как можно дольше.

Холодильная система — Холодильная камера

Чтобы отвести тепло, нам нужно знать, какой будет холодильная нагрузка. Охлаждающая нагрузка меняется в течение дня, поэтому в большинстве случаев рассчитывается средняя холодопроизводительность и рассчитывается холодопроизводительность.

Источники тепла для холодных помещений

Откуда берется все тепло, которое нам нужно отводить?

Нагрузка передачи

Обычно 5-15% приходится на нагрузки передачи. Это тепловая энергия, передаваемая через крышу, стены и пол в холодное помещение.Тепло всегда течет от горячего к холодному, и внутри холодной комнаты, очевидно, намного холоднее, чем вокруг, поэтому тепло всегда пытается проникнуть в пространство из-за этой разницы в температуре. Если холодильная камера подвергается воздействию прямых солнечных лучей, то теплопередача будет выше, поэтому потребуется дополнительная коррекция, чтобы учесть это.

Загрузка продукта

Затем у нас есть загрузки продукта, на которые обычно приходится 55-75% охлаждающей нагрузки. Этим объясняется тепло, которое попадает в холодную комнату при поступлении новых продуктов.Это также энергия, необходимая для охлаждения, замораживания и дальнейшего охлаждения после замораживания. Если вы просто охлаждаете продукты, вам нужно учитывать только явную тепловую нагрузку. Если вы замораживаете продукт, вам необходимо учитывать скрытую теплоту, так как происходит фазовый переход. В течение этого времени используется энергия, но вы не увидите изменения температуры, пока продукт переходит в состояние жидкости и льда. Для дальнейшего охлаждения продуктов ниже точки замерзания требуется дополнительная энергия, что также является явным теплом.Вы также должны учитывать упаковку, поскольку она также будет охлаждаться. Наконец, если вы охлаждаете фрукты и овощи, значит, эти продукты живы, и они будут выделять тепло, поэтому вам придется учитывать и его удаление.

Внутренняя нагрузка

Следующее, что нужно учитывать, — это внутренние нагрузки, которые составляют около 10-20%. Это тепло, выделяемое людьми, работающими в холодильной камере, освещением и оборудованием, таким как автопогрузчики и т. Д. Поэтому для этого вам необходимо подумать, какое оборудование будет использоваться сотрудниками для перемещения продуктов. и вне магазина, сколько тепла они и оборудование будут отдавать и продолжительность дня.

Нагрузка на оборудование

Затем нам нужно рассмотреть холодильное оборудование в помещении, на которое будет приходиться около 1-10% от общей охлаждающей нагрузки. Для этого мы хотим узнать номинальные характеристики двигателей вентиляторов и оценить, как долго они будут работать в течение каждого дня, а затем мы также хотим учитывать любое тепло, передаваемое в пространство от размораживания испарителя.

Инфильтрация тепловой нагрузки

Последнее, что нам нужно учитывать, это инфильтрация, которая снова добавляет 1-10% к охлаждающей нагрузке. Это происходит, когда дверь открывается, так что происходит передача тепла в пространство через воздух.Другое соображение — вентиляция. Фрукты и овощи выделяют углекислый газ, поэтому в некоторых магазинах потребуется вентилятор, этот воздух необходимо охладить, поэтому вы должны учитывать это, если он используется.

Расчет охлаждающей нагрузки — пример работы холодной комнаты

Рассмотрим упрощенный пример расчета охлаждающей нагрузки для холодной комнаты. Теперь, если вы делаете это для реального примера, я рекомендую вам использовать программное обеспечение для проектирования, такое как приложение Danfoss coolselector, для обеспечения скорости и точности.Скачать здесь -> http://bit.ly/2Ars6yF

Передающая нагрузка

  • Размеры нашей холодильной камеры составляют 6 м в длину, 5 м в ширину и 4 м в высоту.
  • Температура окружающего воздуха 30 ° c при относительной влажности 50%, температура внутреннего воздуха 1 ° C при относительной влажности 95%
  • Стены, крыша и пол изолированы 80-миллиметровым полиуретаном со значением U 0,28 Вт / м 2 .K
  • Температура грунта 10 ° C.

Обратите внимание, что производитель должен сообщить вам, какое значение u для изоляционных панелей, если нет, то вам нужно будет рассчитать это.

Для расчета нагрузки передачи мы будем использовать формулу

Q = U x A x (Temp out — Temp in) x 24 ÷ 1000.

  • Q = кВтч / день тепловая нагрузка
  • U = Значение U изоляции (мы уже знаем это значение) (Вт / м 2 .K)
  • A = площадь поверхности стен, крыши и пола (мы рассчитаем это) (м 2 )
  • Temp in = температура воздуха внутри помещения ( ° C)
  • Temp out = Температура наружного воздуха ( ° C)
  • 24 = Часы в день
  • 1000 = преобразование из ватт в кВт.

Вычислить «А» довольно просто, это просто размер каждой внутренней стены, поэтому введите числа, чтобы найти площадь каждой стены, крыши и пола.

Сторона 1 = 6 м x 4 м = 24 м 2
Сторона 2 = 6 м x 4 м = 24 м 2
Сторона 3 = 5 м x 4 м = 20 м 2
Сторона 4 = 5 м x 4 м = 20 м 2
Крыша = 5м x 6м = 30м 2
Пол = 5м x 6м = 30м 2

Затем мы можем использовать эти числа в формуле, которую мы видели ранее, вам нужно будет рассчитать пол отдельно от стен и крыши так как разница температур под полом другая, поэтому и теплопередача будет другой.

Стены и крыша

Q = U x A x (Температура на выходе — Температура на входе) x 24 ÷ 1000
Q = 0,28 Вт / м 2 .K x 113 м 2 x (30 ° C — 1 ° C) x 24 ÷ 1000
Q = 22 кВтч / день

[113 м 2 = 24 м 2 + 24 м 2 + 20 м 2 + 20 м 2 + 30 м 2 + 30 м 2 ]

Пол

Q = U x A x (Температура на выходе — Температура на входе) x 24 ÷ 1000
Q = 0,28 Вт / м 2 .K x 30 м 2 x (10 ° C — 1 ° C) x 24 ÷ 1000
Q = 1.8 кВтч / день

Если пол не изолирован, вам нужно будет использовать другую формулу, основанную на эмпирических данных .

Суммарный дневной прирост теплопередачи = 22 кВтч / день + 1,8 кВтч / день = 23,8 кВтч / день

Помните, что если ваша холодильная комната находится под прямыми солнечными лучами, вам также необходимо учитывать энергию солнца.

Загрузка продукта — Обмен продукта

Далее мы рассчитаем охлаждающую нагрузку от обмена продукта, то есть тепла, поступающего в холодную комнату от новых продуктов, имеющих более высокую температуру.

В этом примере мы будем хранить яблоки, мы можем найти удельную теплоемкость яблок, но помните, что если вы замораживаете продукты, продукты будут иметь другую удельную теплоемкость при охлаждении, замораживании и переохлаждении, поэтому вы Мне нужно будет это учесть и рассчитать отдельно, но в этом примере мы просто охлаждаемся.

Каждый день прибывает 4000 кг новых яблок при температуре 5 ° C и удельной теплоемкости 3,65 кДж / кг. ° C.

Затем мы можем использовать формулу

Q = m x Cp x (Temp enter — Temp store) / 3600.

  • Q = кВтч / день
  • CP = удельная теплоемкость продукта (кДж / кг. ° C)
  • m = масса новых продуктов каждый день (кг)
  • Temp enter = температура на входе продуктов (° C)
  • Temp store = температура внутри магазина (° C)
  • 3600 = преобразовать из кДж в кВтч.

Расчет

Q = mx Cp x (ввод температуры — накопитель температуры) / 3600
Q = 4000 кг x 3,65 кДж / кг ° C x (5 ° C — 1 ° C) / 3600.
Q = 16 кВт · ч / день

Загрузка продукта — Дыхание продукта

Затем мы вычисляем дыхание продукта, это тепло, выделяемое живыми продуктами, такими как фрукты и овощи.Они будут выделять тепло, поскольку они еще живы, поэтому мы охлаждаем их, чтобы замедлить их разрушение и сохранить их дольше.

В этом примере я использовал 1,9 кДж / кг в день в качестве среднего, но этот показатель меняется со временем и с температурой. В этом примере мы используем эмпирические значения, чтобы упростить расчет, поскольку эта охлаждающая нагрузка не считается критической. Если вы должны были рассчитать критическую нагрузку, вам следует использовать более высокую точность. В этом примере в магазине хранится 20 000 кг яблок.

Для его расчета воспользуемся формулой

Q = mx resp / 3600

  • Q = кВтч / день
  • m = масса продукта на складе (кг)
  • соответственно = теплота дыхания product (1,9 кДж / кг)
  • 3600 = преобразует кДж в кВтч.

Q = mx соответственно / 3600
Q = 20,000 кг x 1,9 кДж / кг / 3600
Q = 10,5 кВтч / день

Для раздела продуктов мы суммируем обмен продукта 16 кВтч / день и дыхательную нагрузку 10.5 кВтч / день, чтобы получить общую нагрузку продукта 26,5 кВтч / день.

Внутренняя тепловая нагрузка — Люди

Затем мы рассчитаем внутренние нагрузки от людей, работающих в холодильной камере, поскольку люди выделяют тепло, и мы должны это учитывать.

По нашим оценкам, 2 человека работают в магазине по 4 часа в день, и мы можем посмотреть вверх и увидеть, что при этой температуре они будут выделять около 270 Вт тепла в час внутри.

Мы будем использовать формулу:

Q = люди x время x тепло / 1000

  • Q = кВтч / день
  • человек = сколько человек внутри
  • время = продолжительность времени, которое они проводят внутри каждый день на человека (часы)
  • тепло = потери тепла на человека в час (ватты)
  • 1000 просто преобразует ватты в кВт

Расчет:

Q = люди x время x тепло / 1000
Q = 2 x 4 часа x 270 Вт / 1000
Q = 2.16 кВтч / день

Внутренняя тепловая нагрузка — Освещение

Затем мы можем рассчитать количество тепла, выделяемого освещением, это довольно просто сделать, и мы можем использовать формулу

Q = лампы x время x мощность / 1000

  • Q = кВтч / день,
  • ламп = количество ламп в холодильной камере
  • время = часы использования в день
  • мощность = номинальная мощность ламп
  • 1000 = преобразует ватты в кВт.

Если у нас есть 3 лампы по 100 Вт каждая, работающие 4 часа в день, расчет будет следующим:

Q = лампы x время x мощность / 1000
Q = 3 x 4 часа x 100 Вт / 1000
Q = 1 .2 кВтч / день

Затем для общей внутренней нагрузки мы просто суммируем нагрузку на людей (2,16 кВтч / день) и нагрузку на освещение (1,2 кВтч / день), чтобы получить значение 3,36 кВтч / день.

Нагрузка оборудования — двигатели вентилятора

Теперь мы можем рассчитать тепловыделение двигателями вентилятора в испарителе. Для этого мы можем использовать формулу:

Q = вентиляторы x время x мощность / 1000

  • Q = кВтч / день
  • вентиляторы = количество вентиляторов
  • время = часы работы вентилятора в день (часы)
  • мощность = номинальная мощность двигателей вентиляторов (Вт)
  • 1000 = преобразование из ватт в кВт.

В этом испарителе холодильной камеры мы будем использовать 3 вентилятора мощностью 200 Вт каждый и рассчитываем, что они будут работать 14 часов в день.

Расчет:

Q = вентиляторы x время x мощность / 1000
Q = 3 x 14 часов x 200Вт / 1000
Q = 8,4 кВтч / день

Нагрузка оборудования — двигатели вентиляторов

Теперь мы рассчитаем вызванную тепловую нагрузку размораживанием испарителя. Для расчета этого мы воспользуемся формулой:

Q = мощность x время x циклы x эффективность

  • Q = кВтч / день,
  • мощность = номинальная мощность нагревательного элемента (кВт)
  • время = разморозка время работы (часы)
  • циклов = сколько раз в день будет выполняться цикл оттаивания
  • эффективность = какой% тепла будет передаваться в помещение.

В этом примере в нашей холодильной камере используется электрический нагревательный элемент мощностью 1,2 кВт, он работает в течение 30 минут 3 раза в день, и, по оценкам, 30% всей потребляемой энергии просто передается в холодную комнату.

Q = мощность x время x количество циклов x эффективность
Q = 1,2 кВт x 0,5 часа x 3 x 0,3
Q = 0,54 кВтч / день

Общая нагрузка оборудования — это тепловая нагрузка вентилятора (8,4 кВтч / день) плюс тепловая нагрузка размораживания (0,54 кВтч / день), которая, следовательно, равна 8,94 кВтч / день

Инфильтрационная нагрузка

Теперь нам нужно рассчитать тепловую нагрузку от инфильтрации воздуха.Я собираюсь использовать упрощенное уравнение, но в зависимости от того, насколько важны ваши вычисления, вам может потребоваться использовать другие более полные формулы для достижения большей точности. Мы будем использовать формулу:

Q = изменения x объем x энергия x (выходная температура — входная температура) / 3600

  • Q = кВтч / день
  • изменений = количество изменений объема в день
  • объем = объем холодильной камеры
  • энергия = энергия на кубический метр на градус Цельсия
  • Температура на выходе — это температура воздуха снаружи
  • Темп на входе — температура воздуха внутри
  • 3600 — это просто преобразование из кДж в кВтч.

По нашим оценкам, будет 5 изменений объема воздуха в день из-за открытой двери, объем рассчитан на 120 м 3 , каждый кубический метр нового воздуха обеспечивает 2 кДж / ° C, воздух снаружи составляет 30 ° C и воздух внутри 1 ° C

Q = изменения x объем x энергия x (температура на выходе — температура на входе) / 3600
Q = 5 x 120 м 3 x 2 кДж / ° C x (30 ° C — 1 ° C) / 3600
Q = 9,67 кВтч / день

Общая охлаждающая нагрузка

Для расчета общей охлаждающей нагрузки мы просто суммируем все рассчитанные значения

Нагрузка передачи: 23.8 кВтч / день
Нагрузка продукта: 26,5 кВтч / день
Внутренняя нагрузка: 3,36 кВтч / день
Нагрузка на оборудование: 8,94 кВтч / день
Инфильтрационная нагрузка: 9,67 кВтч / день
Итого = 72,27 кВтч / день

Фактор безопасности

Затем мы должны применить коэффициент безопасности к расчету, чтобы учесть ошибки и отклонения от конструкции. Обычно, чтобы покрыть это, к расчету прибавляют от 10 до 30 процентов, в этом примере я использовал 20%, так что хорошо, просто умножьте охлаждающую нагрузку на коэффициент безопасности, равный 1.2, чтобы получить нашу общую холодопроизводительность 86,7 кВтч / день

Расчет холодопроизводительности

Последнее, что нам нужно сделать, это рассчитать холодопроизводительность, чтобы справиться с этой нагрузкой, общий подход состоит в том, чтобы усреднить общую суточную холодопроизводительность на время работы холодильной установки. Для этого я предполагаю, что устройство будет работать 14 часов в день, что довольно типично для магазина такого размера и типа. Таким образом, общая холодопроизводительность 86,7 кВтч / день, разделенная на 14 часов, означает, что холодильная установка должна иметь мощность 6 единиц.2 кВт, чтобы удовлетворить эту охлаждающую нагрузку.

Расчет теплопередачи | NaturalGasEfficiency.org

Расчет теплопередачи
Введение

Источники тепла включают:

  • Solar Усиление прямого солнечного света через окна
  • Solar Пропускание солнечного света непосредственно на поверхности здания и проводимое через стены / потолок в пространство
  • Теплый наружный воздух, проникающий в помещение и поступающий через принудительную вентиляцию
  • Освещение и оборудование, работающее в помещении, выделяющем отходящее тепло
  • Нагрузка на людей

Самый большой источник тепла зависит от типа здания, в основном от количества и типа стекла, которое в нем есть, а также от того, как стекло может затеняться или нет, а также от типа крыши.

Основные формулы

Формула, используемая для расчета притока тепла за счет теплопроводности (наружная температура окружающей среды во время сезона охлаждения), является той же базовой формулой, что и формула теплопотери, [(Площадь в квадратных футах) x (Значение U) x (Разница температур)]. Если пространство охлаждается механически, каждая БТЕ тепла, превышающая заданное значение, должна быть удалена для поддержания желаемой температуры.

На влажность воздуха в помещении влияют как внешние погодные условия, так и то, что происходит внутри кондиционируемого помещения.Так же, как для испарения фунта воды требуется 970 БТЕ, так и для конденсации фунта водяного пара требуется 970 БТЕ охлаждающей энергии. (На самом деле, конденсированная вода отдает 970 БТЕ в более холодную среду кондиционирования.) Если влажность будет удалена путем конденсации на обычном змеевике кондиционера, то формула будет следующей: (Требуется охлаждение в БТЕ) = (970 БТЕ) x ( фунтов воды). Влажность также можно удалить с помощью вентиляционного воздуха, систем осушения адсорбентом и систем рекуперации энергии.В этих системах не используется конденсация пара для удаления влаги.

Солнечный свет, проходящий прямо через окна (остекление), представляет собой огромную потенциальную охлаждающую нагрузку. Эта нагрузка рассчитывается по «коэффициенту солнечной энергии» на квадратный фут остекления. Коэффициент солнечного усиления представляет собой сложную серию факторов, умноженных вместе, начиная с коэффициента пропускания стекла и заканчивая всеми возможными устройствами / методами затенения и скорректированными с учетом местной погоды (облачность).

Вся электроэнергия, используемая для освещения и оборудования внутри дома, в конечном итоге превращается в БТЕ тепла. Эти БТЕ компенсируют установленную потребность в отоплении в течение отопительного сезона, но являются источником охлаждающей нагрузки в остальное время года. Каждый кВтч содержит 3 413 БТЕ тепловой энергии.

Таким образом, формулы, необходимые для расчета прироста тепла, включают:

  • Поверхности здания: (Площадь квадратных футов) x (U-фактор) x (разница температур) = БТЕ в час
  • Стеклянные площади: (Коэффициент усиления солнечной энергии) x (Площадь окон в квадратных футах в каждом направлении / фасаде здания)
  • Нагрузка на освещение и оборудование: (кВтч общая нагрузка) x (3413 БТЕ / кВтч) = БТЕ в час
  • Нагрузка на человека: (Количество людей) x (от 200 до 400 БТЕ на человека в час) = БТЕ в час
  • Вентиляционная нагрузка: (CFM) x (60 минут / час) x (Количество людей) x (0.018) x (разница температур) = БТЕ в час
  • CFM = в соответствии с требованиями кода на человека за час занятости
  • 0,018 = коэффициент удельной теплоемкости воздуха (БТЕ на кубический фут на градус F)
  • Разница температур = снаружи и внутри ЧУВСТВИТЕЛЬНО.

Сумма всех этих нагрузок за час составляет основу для расчета теплопередачи.

Практические правила

Коэффициент усиления солнечной энергии через ограждающую конструкцию здания оценивается так же, как и для потерь тепла.Существует разница для поверхностей, которые подвергаются воздействию прямых солнечных лучей, и характеристик поверхности, которые влияют на поглощение, а не на отражение солнечного света. Однако эти различия очень сложно точно рассчитать, и, в конце концов, они не имеют большого значения для большинства учреждений, если сравнить их с другими более значимыми факторами. На объектах в жарком климате используются излучающие барьеры (отражающие покрытия и фольга), чтобы успешно снизить приток тепла в зданиях. Однако я считаю, что эти барьеры снижают свою ценность, если они неправильно установлены — в прямом контакте с другими материалами, где коэффициент отражения минимален, или они продвигаются для использования в приложениях с более низкими температурами.Это потому, что излучающие барьеры очень эффективно отражают инфракрасную энергию; но как только инфракрасное излучение преобразуется в тепло, основным методом теплопередачи является теплопроводность, где лучистые барьеры имеют очень небольшую ценность. Поэтому будьте осторожны при рассмотрении «эффективной R-ценности», заявленной некоторыми продавцами продуктов. Еще одна вещь, которую следует учитывать в отношении разницы температур, — это помещения, прилегающие к областям, более горячим, чем снаружи, например, потолки под очень горячими чердаками или офисы, расположенные в или рядом с гораздо более горячими производственными помещениями.

Коэффициент усиления солнечной энергии через окна можно точно рассчитать В ТЕОРИИ для расчетных условий пиковых дней. Формула начинается с БТЕ на квадратный фут на направление стекла для местоположения объекта (северная широта). Этот коэффициент обычно называют «фактором изоляции от солнца», доступным в ASHRAE и некоторых других источниках. Некоторые веб-сайты, посвященные солнечной энергии, предлагают коэффициенты, основанные на общем потенциале производства электроэнергии на данном участке. Они могут быть, а могут и не быть хорошими источниками данных в БТЕ, поскольку их номинальные мощности в кВт предназначены для выработки электроэнергии, а не для получения тепла.Фактором является «валовой» прирост БТЕ, на который влияют МНОГИЕ переменные, включая сезонное затенение, фиксированное затенение здания, внутреннее затенение, коэффициент пропускания стекла и почасовые погодные условия. Высококачественные программы расчета учитывают все эти факторы на почасовой основе. Другие могут использовать месячный коэффициент. Стекло, выходящее на запад, часто является наиболее важным фактором для получения тепла, потому что высокий угол наклона солнца в летние месяцы означает, что меньше солнечного света проникает через стекло, обращенное на юг.

«Освещение и оборудование» выполняет свою работу, которая в итоге превращается в отходящее тепло. Люминесцентная лампа на 40 Вт производит намного больше света, чем лампа накаливания на 40 Вт, и поэтому более эффективна, но обе они производят 40 Вт на БТЕ (40 x 3,413 = 136,52 БТЕ в час). Вся электроэнергия, используемая для работы небольшого оборудования. в кондиционируемом пространстве превращается в БТЕ тепла. Обычно легко оценить приток тепла от освещения из-за графика занятости. Сложная часть оценки притока тепла от оборудования — это оценка коэффициента (ов) нагрузки.Оборудование не всегда работает с номинальными данными, указанными на заводской табличке. Следовательно, если какое-либо оборудование действительно не находится в непрерывном режиме работы, следует учитывать данные паспортной таблички, чтобы получить более реалистичную оценку тепловыделения. Для некоторых типов существующих небольших помещений, таких как офис, может быть проще посмотреть счета за электроэнергию за месяцы, которые не содержат электрического обогрева и без или с минимальным охлаждением, и считать это количество кВтч нагрузкой на освещение и оборудование.

People Load означает ощутимые БТЕ от тепла тела.Существует также скрытая нагрузка от дыхания и потребность в вентиляции свежего воздуха, поскольку люди дышат. Однако эти нагрузки обычно учитываются как вентиляционные нагрузки и не обязательно называются «притоком тепла». Типичная нагрузка БТЕ на человека составляет 200–1000 БТЕ в час, при этом 400 — типичный рабочий и 1000 — занятия спортом.

Вентиляция Воздух требуется большинством местных строительных норм и правил для НЕЖИЛЫХ объектов. Некоторые коды могут допускать «интеллектуальное управление», которое позволяет установить монитор CO2 и регулировать объем вентилируемого воздуха в соответствии с уровнями CO2.Чаще всего вентиляционный воздух регулируется настройкой «Занят / не занят» на элементах управления в зависимости от предполагаемого количества людей. Стандарт ASHRAE 62-1989 предлагает диапазоны от 15 до 60 кубических футов в минуту, но типичные требования для некурящих и непромышленных помещений составляют 15-25 кубических футов в минуту на человека.

Дополнительная информация

Дополнительную информацию об усилении солнечной энергии через окна из интерактивного источника см. На сайте www.efficientwindows.org

Источник: Текст Боб Феган, 12/2008; Таблица теплопроизводительности в БТЕ на человека с сайта www.engineeringtoolbox.com 9/2005; диаграмма тепловыделения окон с www.efficientwindows.org 9/2005;


© 2008 Energy Solutions Center400 Н. Кэпитол-стрит, Северо-Западный Вашингтон, округ Колумбия 20001 Все права защищены. Юридические вопросы Свяжитесь с нашим веб-мастером

Как рассчитать тепловую нагрузку и требования к охлаждению серверного помещения

Очень часто ИТ-шкафы, компьютерные и серверные помещения упускаются из виду, когда речь идет об охлаждении и мониторинге окружающей среды, и все же они могут быстро нагреваться.Одна из самых больших проблем — решить, как рассчитать фактическую потребность в охлаждении, а затем как лучше всего реализовать ее в относительно небольших и ограниченных пространствах.

Рекомендуемые температура и влажность серверного помещения

Большинство электронных устройств могут работать при температуре до 30-40 ° C, и в брошюрах по серверам и технических характеристиках может быть указано, что их устройства могут работать до этого температурного диапазона без снижения номинальных характеристик, но факт в том, что тепло убивает электронику.

На верхнем пределе своего температурного рабочего диапазона охлаждающие вентиляторы должны работать намного быстрее, чтобы перемещать объем воздуха по ЦП и связанной с ним электронике.Вентиляторы — это механические устройства с подшипниками, которые изнашиваются и требуют замены. Срок службы компонентов электроники также снижается при более высоких температурах.

Для большинства людей температура выше 27˚C становится неудобной для работы. Рекомендуемый диапазон температур для компьютера, серверной комнаты или центра обработки данных составляет 18–27 ° С, а в идеале 18–25 ° С. Этот нижний предел рекомендуется для любых систем ИБП, используемых в вычислительной среде со свинцово-кислотными батареями с регулируемым клапаном (VRLA). Рекомендуемый диапазон температур для системы ИБП с батареями VRLA составляет 20-25˚C.

Рекомендуемая относительная влажность 45-50%. Это гарантирует, что в помещении не будет слишком сухо, что может привести к накоплению статического электричества, и не будет слишком влажно, что может привести к накоплению конденсата на более холодных пластиковых и металлических поверхностях.

ASHRAE, Американское общество инженеров по отоплению, охлаждению и кондиционированию воздуха, является ведущим органом, когда речь идет об уровнях охлаждения и влажности в критически важных объектах и ​​центрах обработки данных. Организация предложила увеличить температуру окружающей среды до 30˚C, чтобы повысить энергоэффективность.

Для получения дополнительной информации см .: https://tc0909.ashraetcs.org/documents/ASHRAE%20Networking%20Thermal%20Guidelines.pdf

Хотя такая более высокая температура окружающей среды снизит потребность в системах охлаждения и, следовательно, улучшит потребление энергии, она может быть подходящей только для больших серверных комнат и центров обработки данных, которые могут включать изоляцию холодного и / или горячего коридора. Для небольших компьютерных и серверных установок это не является рентабельным, и единственное решение — установить некоторую форму кондиционирования воздуха.

Кондиционеры для IT-шкафов и компьютерных залов

Как охлаждать серверы в ближайшем ИТ-отделении, компьютере или серверной комнате, зависит от их расположения и формата установки. Большинство серверов устанавливаются в серверную стойку или размещаются в виде напольных башен. В такой среде серверы имеют воздушное охлаждение и оснащены охлаждающими вентиляторами, которые пропускают холодный воздух через блоки через решетки на передней панели и выводят горячий воздух через вытяжные зоны на задней панели.

Можно установить несколько серверов вместе с устройствами хранения, сетевыми коммутаторами и маршрутизаторами.Все эти элементы будут генерировать тепловую мощность, которую необходимо учесть при расчете требований к охлаждению.

Независимо от того, являются ли серверы напольными башнями или монтируются в стойку, для них потребуется достаточный воздушный поток вокруг них и источник холодного воздуха. Самый распространенный подход — установка кондиционера. Решения жидкостного охлаждения доступны, но чаще используются в высокопроизводительных вычислительных средах и центрах обработки данных.

Кондиционер может быть установлен на стене или потолке и будет таким же, как обычно используется в офисе.Эти типы кондиционеров известны как «сплит-блоки».

Сплит-системы кондиционирования воздуха — очень эффективный способ охлаждения помещения. Они состоят из внутреннего блока, соединенного медными трубами с наружным блоком или теплообменником и компрессором. Блоки кондиционирования воздуха поставляются с охлажденным хладагентом, а внутренние вентиляторы продувают воздух через змеевики испарителя в комнату.

Тепло поднимается, поэтому кондиционер в комнате подвешивается к потолку или монтируется на стене. Однако этот агрегат будет только «проталкивать» холодный воздух в комнату.Внутри серверной стойки может происходить перегрев, называемый «горячими точками». Воздушный поток внутри шкафа можно улучшить, используя заглушки и оставив достаточно места вокруг отдельных ИТ-компонентов для воздушного потока. Также можно установить дополнительные кассеты вентиляторов, чтобы воздух проходил через серверный шкаф.

Из-за возможности резких скачков тепла в ограниченном пространстве, таком как серверная стойка или компьютерный зал, важно установить мониторинг окружающей среды. Помимо температуры и влажности, система мониторинга окружающей среды может также обнаруживать дым, огонь и воду, если она оснащена соответствующими дополнительными датчиками.Чтобы система мониторинга окружающей среды работала эффективно, датчики должны быть правильно расположены внутри установки с подходящим потоком воздуха для отбора проб. В серверной стойке это может означать до 3 пар датчиков (передних и задних), размещаемых снизу, посередине и вверху серверной стойки.

Использование внешнего теплообменника и компрессора предотвращает накопление конденсата внутри внутреннего блока кондиционирования воздуха. Это одна из проблем портативных блоков переменного тока, у которых будет поддон для хранения влаги, удаляемой из воздуха при его охлаждении.Поддон конденсатора необходимо опорожнять через равные промежутки времени, чтобы переносной кондиционер продолжал работать. В качестве альтернативы портативные блоки переменного тока могут также иметь выхлопную трубу, которая требует вывода наружу через дверной проем или окно; оба из них обеспечивают плохую изоляцию от окружающей среды и, следовательно, низкую эффективность охлаждения.

Расчет требований к охлаждению

Простое практическое правило расчета кондиционера для комнаты состоит в том, чтобы определить площадь пола комнаты с точки зрения ширины на глубину в метрах и умножить это на 20, чтобы получить британскую тепловую единицу (BTU) для пространства.

Если пространство 10 на 20 метров, площадь пола = 10 × 20 = 200 м²

БТЕ составляет 200 × 20 = 4000 БТЕ или 4000 БТЕ в час

Что касается кондиционера, мы должны учитывать необходимое количество БТЕ / час при 1 кВт = 3412 БТЕ / час. Таким образом, киловатт равен:

4,000 / 3412 = 1,17 кВт охлаждения требуется

Поэтому для этого приложения мы будем рассматривать блок переменного тока ближайшего размера, которым может быть система мощностью 3 или 5 кВт.

Расчет тепловых нагрузок

Тепловыделение относится к передаче тепла в окружающей среде, и есть несколько источников тепла в вычислительной среде, для которых необходимо рассчитать.Они должны быть учтены для более точного расчета и включают:

  • Площадь пола: как указано выше 10 × 20 метров
  • Окна: маленькие компьютерные комнаты, как правило, имеют окна, которые увеличивают приток тепла
  • Количество человек в комнате: количество человек в комнате в любой момент времени
  • Тепло, произведенное оборудованием: для серверов мощность = количество тепла, произведенного
  • Тепло от электрического освещения: Вырабатывается ли светом светодиоды или люминесцентные лампы

Взяв оставшиеся элементы для расчета после площади пола, получим:

Windows

Если в ИТ-туалете, компьютере или серверной комнате нет окон, то эту часть расчета можно игнорировать.Если есть окна, то их необходимо учитывать в зависимости от того, выходят ли окна на южную или северную сторону.

  • Южное окно BTU = ширина окна x глубина (м) x 870, затем x 1,5 (если нет жалюзи)
  • Северное окно BTU = ширина окна x глубина (м) x 165, затем x 1,5 (если нет жалюзи)

Общее окно BTU = Южное окно BTU + Северное окно (BTU)

человек (обитатели и посетители)

Обычно разрешается выделять 400 БТЕ на человека.Расчет будет таким:

.

Общее количество человек в БТЕ = количество человек в комнате x 400

ИТ-оборудование и другие устройства

Для серверов энергия, потребляемая оборудованием, преобразуется в тепло центральным процессором (ЦП). Следовательно, сервер мощностью 900 Вт будет генерировать 900 Вт тепла. Для этого расчета важно перечислить все ИТ-устройства, включая коммутаторы, маршрутизаторы и устройства хранения, а также серверы. Общая мощность, необходимая, скажем, для системы ИБП, может быть принята за охлаждающую нагрузку в ваттах или киловаттах.В целях безопасности добавьте в расчет коэффициент 1,5, чтобы учесть будущее расширение.

ИТ-оборудование БТЕ = общая мощность x 1,5

Другие более крупные электрические системы в помещении также увеличивают нагрузку в БТЕ. Примером может служить источник бесперебойного питания. Чем больше ИБП по номинальной мощности в кВА / кВт, тем выше тепловая мощность. Это также будет зависеть от нагрузки ИБП и состояния заряда батареи.

Электрическое освещение

Тот же процесс для ИТ-оборудования можно повторить для освещения.Окончательное значение умножается на 4,25, чтобы получить BTU освещения, но оно может быть уменьшено на одну треть, если вместо люминесцентного освещения используется светодиодное освещение.

Освещение BTU = Общая мощность для всего освещения x 4,25

Расчет общего охлаждения

Общая охлаждающая нагрузка складывается из отдельных вычислений следующим образом:

Площадь пола + Окно + Люди + ИТ-оборудование + Освещение = Общее охлаждение требуется

БТЕ.

и чтобы получить кВт, разделите полное охлаждение БТЕ на 3412

. Требуется

БТЕ / 3412 = Требуется общая мощность охлаждения

Хотя это более точный расчет, чем «эмпирическое правило», он по-прежнему является общим в своем подходе и может снова использоваться только в качестве руководства.Для более точных и полных расчетов рекомендуется обследование участка, чтобы учесть другие характеристики и требования объекта, а также убедиться, что выбрана наиболее подходящая технология охлаждения и кондиционер правильного размера.

Сводка

Изменение климата продолжает стимулировать спрос на кондиционирование воздуха, особенно в компьютерных и серверных помещениях, которые, возможно, уже находятся на грани допустимого диапазона температур окружающей среды. IT относительно легко улучшить поток охлаждающего воздуха в помещениях такого типа, если есть кондиционер, который нужно модернизировать.Для ИТ-оборудования без существующего блока переменного тока необходимо рассчитать требования к охлаждению серверной комнаты.

Несмотря на то, что можно сделать быстрый расчет, важно, чтобы объект был обследован квалифицированным инженером HVAC и специалистом по охлаждению. Наряду с любой установленной ИТ-сетью или решением для охлаждения компьютерного зала также важно рассмотреть возможность мониторинга окружающей среды, чтобы гарантировать, что внезапные всплески тепла и скачки температуры вызовут аварийное состояние, на которое можно быстро отреагировать, чтобы обеспечить бесперебойную работу сервера и непрерывность бизнеса.

.

alexxlab

Related Posts

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *