Как поднять груз с помощью троса и блоков: Как поднять груз на высоту своими руками

Содержание

Как поднять груз на высоту своими руками

Необходимые инструменты и материалы

Для подъема больших грузов человек не очень силен, но он придумал множество механизмов, которые упрощают этот процесс, и в этой статье мы обсудим полиспасты: назначение и устройство таких систем, а также попытаемся сделать простейший вариант такого приспособления своими руками.

Каким образом мы упрощаем подъем грузов?

Грузовой полиспаст – это система, состоящая из веревок и блоков, благодаря которой можно выиграть в эффективной силе при потере в длине. Принцип довольно прост. В длине мы проигрываем ровно столько, во сколько раз оказался выигрыш в силе. Благодаря этому золотому правилу механики можно поднимать грузы большой массы, не прилагая при этом больших усилий. Что в принципе не так критично. Приведем пример. Вот вы выиграли в силе в 8 раз, при этом вам придется вытянуть веревку длиной в 8 метров, чтобы поднять объект на высоту 1 метр.

Применение таких приспособлений обойдется вам дешевле, чем аренда подъемного крана, к тому же, вы можете сами контролировать выигрыш в силе. У полиспаста есть две разные стороны: одна из них неподвижная, которая крепится на опоре, а другая – подвижная, которая цепляется на самом грузе. Выигрыш в силе происходит благодаря подвижным блокам, которые крепятся на подвижной стороне полиспаста. Неподвижная часть служит только для изменения траектории движения самой веревки.

Виды полиспастов выделяют по сложности, четности и кратности. По сложности есть простые и сложные механизмы, а кратность обозначает умножение силы, то есть, если кратность будет равна 4, то теоретически вы выигрываете в силе в 4 раза. Также редко, но все же применяется скоростной полиспаст, такой вид дает выигрыш в скорости перемещения грузов при совсем малой скорости элементов привода.

Как работает простая конструкция блоков?

Рассмотрим для начала простой монтажный полиспаст. Его можно получить при добавлении блоков на опору и груз. Чтобы получить нечётный механизм, необходимо закрепить конец верёвки на подвижной точке груза, а чтобы получить чётный, то крепим веревку на опоре. При добавлении блока получаем +2 к силе, а подвижная точка дает +1, соответственно. Например, чтобы получить полиспаст для лебедки с кратностью 2, необходимо закрепить конец верёвки на опоре и использовать один блок, который крепится на грузе. И у нас будет чётный вид приспособления.

Принцип работы полиспаста с кратностью 3 выглядит по-другому. Здесь конец веревки крепится на грузе, и используются два ролика, один из них мы крепим на опоре, а другой – на грузе. Такой тип механизма дает выигрыш в силе в 3 раза, это нечётный вариант. Чтобы понять, каков выигрыш в силе получится, можно воспользоваться простым правилом: сколько веревок идет от груза, таков наш выигрыш в силе. Используются обычно полиспасты с крюком, на котором, собственно говоря, и крепится груз, ошибочно думать, что это только блок и веревка.

Сложная система блоков – как рассчитать выигрыш в силе?

Теперь узнаем, как работает полиспаст сложного типа. Под этим названием подразумевается механизм, где соединены в одну систему несколько простых вариантов данного грузового устройства, они тянут друг друга. Выигрыш в силе таких конструкций рассчитывается путем перемножения их кратностей. Например, мы тянем один механизм с кратностью 4, а другой с кратностью 2, тогда теоретический выигрыш в силе у нас будет равен 8. Все вышеуказанные расчеты имеют место быть только у идеальных систем, у которых нет силы трения, на практике же дела обстоят иначе.

В каждом из блоков происходит небольшая потеря в мощности из-за трения, так как она еще тратится как раз на преодоление силы трения. Для того чтобы уменьшить трение, необходимо помнить: чем больше у нас радиус перегиба веревки, тем меньше будет сила трения. Лучше всего использовать ролики с большим радиусом там, где это возможно. При использовании карабинов следует делать блок из одинаковых вариантов, но ролики гораздо эффективнее карабинов, так как на них у нас потеря составляет 5-30 %, а вот на карабинах же до 50 %. Также не лишним будет знать, что наиболее эффективный блок необходимо располагать ближе к грузу для получения максимального эффекта.

Как же нам рассчитать реальный выигрыш в силе? Для этого нам необходимо знать КПД применяемых блоков. КПД выражается числами от 0 до 1, и если мы используем веревку большого диаметра или слишком жесткую, то эффективность от блоков будет значительно ниже, чем указана производителем. А значит, необходимо это учесть и скорректировать КПД блоков. Чтобы рассчитать реальный выигрыш в силе простого типа грузоподъемного механизма, необходимо рассчитать нагрузку на каждую ветвь веревки и сложить их. Для расчета выигрыша в силе сложных типов необходимо перемножить реальные силы простых, из которых он состоит.

Веревка и ее роль в работе полиспаста

Не стоит забывать еще и о трении веревки, так как ветви ее могут перекручиваться между собой, а ролики от больших нагрузок могут сходиться и зажимать веревку. Дабы этого не происходило, следует разнести блоки относительно друг друга, например, можно между ними использовать монтажную плату. Следует также приобретать только статические веревки, не растягивающиеся, так как динамические дают серьёзный проигрыш в силе. Для сбора механизма может использоваться как отдельная, так и грузовая веревка, присоединенная к грузу независимо от подъемного устройства.

Преимущества использования отдельной веревки состоит в том, что вы можете быстро собрать или приготовить заранее грузоподъемную конструкцию. Вы также можете использовать всю ее длину, это также облегчает проход узлов. Из минусов можно упомянуть то, что нет возможности автоматической фиксации поднимаемого груза. Преимущества грузовой веревки в том, что возможна автофиксация поднимаемого объекта, и нет необходимости в отдельной веревке. Из минусов важно то, что при работе сложно проходить узлы, а также приходится затрачивать грузовую веревку на сам механизм.

Поговорим об обратном ходе, который неизбежен, так как он может возникнуть при прихватывании веревки, или же в момент снятия груза, или при остановке на отдых. Чтобы обратного хода не возникало, необходимо использовать блоки, которые пропускают веревку только в одну сторону. При этом организовываем конструкцию так, что блокирующий ролик крепится первым от поднимаемого объекта. Благодаря этому, мы не только избегаем обратного хода, но также позволяем закрепить груз на время разгрузки или же просто перестановки блоков.

Если вы используете отдельную веревку, то блокирующий ролик крепится последним от поднимаемого груза, при этом фиксирующий ролик должен обладать высокой эффективностью.

Способы крепления веревки к грузоподъемному механизму

Теперь немного о креплении грузоподъемного механизма к грузовой веревке. Редко, когда у нас под рукой находится веревка нужной длины, чтобы закрепить подвижную часть блока. Вот несколько видов крепления механизма. Первый способ – с помощью схватывающих узлов, которые вяжутся из репшнуров диаметром 7-8 мм, в 3-5 оборотов. Данный способ, как показала практика, является наиболее эффективным, так как схватывающий узел из 8 мм шнура на веревке диаметром 11 мм начинает сползать только при нагрузке 10-13 кН. При этом вначале он не деформирует веревку, а спустя какое-то время, оплавляет оплетку и прикипает к ней, начиная играть роль предохранителя.

Другой способ заключается в использовании зажима общего назначения. Время показало, что его можно использовать на обледенелых и мокрых веревках. Он начинает ползти только при нагрузке в 6-7 кН и несильно травмирует веревку. Еще один способ заключается в использовании персонального зажима, но он является не рекомендуемым, так как он начинает ползти при усилии уже в 4 кН и при этом рвет оплетку, или даже может перекусить веревку. Это все промышленные образцы и их применение, мы же попробуем создать самодельный полиспаст.

Создаем простейший подъемный механизм своими руками

А вот если механизм для грузов нужен срочно или на один раз, а выбирать по магазинам его нет времени и жалко денег, мы расскажем, как сделать полиспаст своими руками. Хорошо, если у вас в мастерской имеются резьбовые шпильки, подшипники, блок, трос, крюк, шестеренка. Понадобится немного времени: нужно подшипники насадить на шпильку. Гайку от шпильки желательно зафиксировать, чтобы не тратить некоторую часть сил впустую на прокручивание своеобразного вала. Конец шпильки можно снабдить шестеренкой, сделав таким образом более удобный ручной привод.

Через блок перекидываем трос и крепим его на опоре, а вот на другой конец цепляем крюк, на который будем вешать груз. Также на конце троса можно зафиксировать систему строп, если характер груза не позволит его насадить на крюк. В принципе, самый простейший вариант полиспаста готов. Остается приступить к работе, соблюдая технику безопасности, которая одинакова для всех механизмов, как покупных, так и самодельных. Внимательно проверяйте все элементы на целостность перед работой, а во время работы не делайте резких движений, поднимать груз следует плавно, и, конечно, не стоит стоять под подвешенным грузом.

Всем вечер добрый!

Мужики, поделитесь советом, ссылочкой…вообщем есть таль, есть место для подъема, все без проблем, но вот как поднять груз в полевых условиях не используя автокранманипулятор.

макс.груз кг 500,высота метра 3-4 в зависимости от габаритов, (погрузка нужна будет в прицеп авто)

Ребят, вот ударила мне мысль соорудить что то подобное треноги… все бы ничего, но вот не смог я решить задачу, как поднимать груз не под самой треногой(в месте косяния трех труб), а на расстоянии полметра например… ) всю конструкцию надо бы сделать разборную…я бы на ютубе посмотрел, но как вот забить в поиск то что мне надо, товарищи, ведь наверняка кто то делал нечто подобное, поделитесь, оч прошу…

За всю долгую историю своего существования человек не раз сталкивался с задачей поднятия и перемещения в пространстве тяжёлых предметов. Например, знакомые всем египетские пирамиды состоят из массивных каменных блоков, которые не под силу поднять никому. Поэтому одним из величайших достижений человечества является изобретение грузоподъёмного крана, который позволил существенно упростить задачу по перемещению тяжёлых грузов и ускорить строительство домов и других объектов.

Устройство машины

В основе принципа работы подъёмного крана лежит физика простых механизмов. Самый простой вариант крана представляет собой палку, расположенную на точке опоры таким образом, что свободные концы имеют разную длину. Теперь если к короткому рычагу подвесить груз, то для его поднятия потребуется меньше усилий. Наиболее распространена конструкция, в которой используется помимо рычагов ещё и система блоков.

Подъёмный кран, собранный своими руками, является неоспоримым помощником в малом строительстве. При возведении частного дома не требуется использования громоздких промышленных кранов. Высота домов редко превышает 2-х этажей, а вес поднимаемого груза 200 килограмм.

Схема подъемного крана

Несмотря на то что существует множество вариаций подъёмных механизмов, классический подъёмный кран состоит из следующих частей:

  • Стрела, с закреплённым на её конце блоком. В зависимости от её длины, определяется высота, на которую можно поднять груз.
  • Платформа. К ней крепится стрела и противовес. Является основной частью крана и подвергается значительным нагрузкам. Поэтому при изготовлении платформы, важно особое внимание уделять её прочности.
  • Противовес. Служит для устойчивости крана. Определяет максимальный вес груза, который кран может поднять. Существуют варианты наборных противовесов для обеспечения максимальной устойчивости.
  • Растяжка, соединяющая стрелу и противовес. Позволяет регулировать наклон стрелы и перемещать груз как в вертикальной, так и в горизонтальной плоскости.
  • Лебёдка с тросом. Является самим подъёмным механизмом. От мощности лебёдки зависит то, какой вес способен поднять кран.
  • Стойка с поворотным механизмом. Она необходима для поворота крана в стороны.
  • Опорный крест, который является основанием крана. Задаёт устойчивость всей конструкции. При его изготовлении также следует уделять внимание его прочности.

Условия эксплуатации

Для безопасной эксплуатации подъёмных механизмов, следует придерживаться определённых правил.

Самодельный подъемный кран Пионер

Эти правила касаются любого подъёмного устройства:

  • Недопустимо превышать грузоподъёмность. Слишком тяжёлый груз может повредить устройство.
  • Основание должно быть устойчиво. Самодельные подъёмные устройства должны располагаться на заранее подготовленной твёрдой горизонтальной поверхности.
  • При плохих погодных условиях также следует воздержаться от работы с краном. Сильный ветер выведет кран из равновесия, а плохая видимость может помешать заметить людей под стрелой.
  • Перед тем как эксплуатировать кран или подъёмное устройство, необходимо провести внешний осмотр на предмет выявления неисправностей. При обнаружении неисправностей запрещается эксплуатация крана.
  • Следует помнить, что при работе с подъёмником не стоит делать резких движений. Груз необходимо поднимать плавно. И самое главное – ни в коем случае не стоять под поднимаемым грузом.

Какими характеристиками должен обладать гаражный подъёмник

В гаражных условиях используются два типа подъёмных механизма. К первому типу относят подъёмник, способный поднять автомобиль целиком, а ко второму относят подъёмник типа гусь, позволяющий перемещать грузы по гаражу.

Подъёмники первого типа являются стационарными устройствами и главное требование, которое предъявляется к ним – устойчивость. Автомобиль весит более тонны и не должен иметь ни малейшего шанса на падение. Для того чтобы исключить какие-либо несчастные случаи, гаражный подъёмник должен иметь надёжный стопор.

Самодельный кран гусь

Наиболее часто в автомастерских используют подъёмники типа «гусь». Его достаточно просто изготовить из профильной трубы или швеллера. Сначала варится основание, на которое нужно установить поворотный механизм. Стрелу лучше всего изготовить с регулируемым вылетом. Так появится возможность перемещать тяжести в любом направлении.

Как работает простая конструкция блоков

Система блоков или полиспаст известна человечеству с древнейших времён. Классическая конструкция системы состоит из шкивов и троса. Один шкив называют блоком. В зависимости от способа крепления шкив может быть подвижным и неподвижным:

  • Неподвижный блок. Крепится к опоре и играет роль изменения направления движения каната. Не даёт никакого выигрыша в силе.
  • Подвижный блок. Располагается на стороне груза и даёт выигрыш в силе.

Принцип работы полиспаста схож с принципом работы рычага в физике простых механизмов. Роль рычага в этом случае играет сам трос. В случае простого блока из двух шкивов, подвижный шкив делит верёвку на 2 части и для того, чтобы поднять груз на то же расстояние, потребуется канат в 2 раза длиннее. Работа по поднятию груза выполняется в том же объёме. А усилие, из-за того, что длина верёвки стала в два раза больше, становится в два раза меньше.

В случае если в системе более 2-х шкивов, выигрыш в силе примерно равен количеству блоков. В случае 3-х блоков, усилие будет в 3 раза меньше, а 4 блока потребуют лишь четверть от первоначального усилия.

Сложная система блоков как рассчитать выигрыш в силе

Если система устроена так, что один простой полиспаст тянет собой другой простой полиспаст, то это уже сложная система блоков. Для теоретического расчёта выигрыша в силе, необходимо условно разделить сложный полиспаст на простые и перемножить значения выигрыша от простых полиспастов.

Например, если система состоит из 4 блоков, и первый условный простой полиспаст имеет выигрыш в силе 3. Он тянет за собой второй простой двухблочный полиспаст тоже с выигрышем в 3. Суммарно усилие, которое потребуется приложить будет в 9 раз меньше. Именно 4-х блочный сложный полиспаст наиболее часто используется спасателями.

Способы крепления верёвки к грузоподъёмному механизму

При создании комплексных полиспастов, нередко бывают ситуации, когда троса необходимой длины для крепления подвижного блока не оказывается под рукой.

Кран для газоблоков

Способы крепления троса с помощью такелажа общего назначения:

  • С использованием репшнура. С помощью самозатягивающегося узла репшнур привязывается к основному тросу. По мере поднятия груза, схватывающийся узел передвигается по основной верёвке, позволяя тем самым увеличить высоту подъёма груза.
  • С использованием зажимов. В случае использования стального троса – использовать репшнур не представляется возможным, поэтому необходимо использовать специальные зажимы.

Создаём простейший подъёмный механизм своими руками

Строительство подъёмного крана небыстрая задача и оправдана в том случае, если он будет требоваться часто или объем работы достаточно велик. В тех случаях, когда груз нужно поднять срочно или это разовая операция, то можно воспользоваться подручными средствами.

Для создания простейшего подъёмного устройства потребуется шнур, и два блока. Один блок и конец верёвки закрепляется неподвижно на опоре. Это будет самая высокая точка, до которой можно поднять груз. Второй блок крепим на груз с помощью строп или крюка. Верёвку протягиваем сначала по блоку, закреплённому на грузе, затем пропускаем через верхний блок. Выигрыш в силе при этом будет в 2 раза. Используя собственный вес можно легко поднять груз весом в 100 килограмм на необходимую высоту.

Мини подъемный кран своими руками

Если добавить возможность перемещения верхнего блока по направляющей, например по рельсе, то можно получить консольный кран, сделанный своими руками. Он пригодится в гаражных условиях для перемещения тяжёлых частей машин.

Следует помнить, что при работе с подъёмником не стоит делать резких движений. Груз необходимо поднимать плавно. И самое главное – ни в коем случае не стоять под поднимаемым грузом. Это же правило относится к подъёмному крану – стоять под стрелкой запрещено.

Материалы и инструменты

Самое главное, при изготовлении подъёмного крана, это использовать качественный инструмент материалы. Это даст гарантию тому, что конструкция получится крепкой и безопасной.

Трос должен иметь минимальное растяжение, это даст больший выигрыш в силе при использовании системы блоков. Фурнитуру, используемую для обвязки необходимо брать только металлическую. Пластиковая фурнитура не выдерживает сильных нагрузок и ломается в неподходящий момент. В качестве крепежа отдельных частей самодельного крана следует выбирать метизную продукцию повышенной прочности.

Если предполагается использование лебёдки, то её грузоподъёмность не должна быть менее 500 килограмм. Оптимальным выбором будут лебёдки, способные поднять груз весом в 1 тонну и более.

В заключение хочется ещё раз напомнить о необходимости соблюдения техники безопасности при работе с подъёмными механизмами. Также, независимо от того, является ли кран покупным или же сделан своими руками, перед началом работы следует провести его осмотр.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Как поднять груз с помощью троса и блоков

Технология работ | Автор топика: Liddell

В данном разделе будем собирать самую важную и полезную информация для промышленных альпинистов.

Alpme.ru-Высотные (Bhadraksa) ПОЛИСПАСТ.

Полиспаст – это грузоподъемное устройство, состоящее из нескольких подвижных и неподвижных блоков огибаемых веревкой, канатом или тросом, позволяющее поднимать грузы с усилием в несколько раз меньшим, чем вес поднимаемого груза.
Владение системой подъема грузов с помощью полиспастов – это важный технический навык необходимый при проведении спасательных и высотных работ, организации навесных переправ и во многих других случаях.

Этим навыком необходимо владеть альпинистам, спасателям, промышленным альпинистам, спелеологам, туристам и многим другим, кто работает с веревками.

Alpme.ru-Высотные (Bhadraksa) УЗЛЫ.

Веревка является неотъемлемой частью снаряжения для промышленного альпинизма. По-настоящему универсальным инструментом она становится при наличии умелых рук и науки завязывать альпинистские узлы. Сделать навеску для того чтобы спустить снаряжение в пещеру, совершить переправу через реку, увязать груз, подняться по опасной скале или надежно установить палатку – все это потребует от вас знания самых разнообразных узлов.

Эти узлы будут полезны спасателям, альпинистам, и просто в домашнем хозяйстве для выполнения повседневных функций.

Alpme.ru-Высотные (Bhadraksa) ТЕХНИКА БЕЗОПАСНОСТИ ПРИ РАБОТЕ С БЕНЗОПИЛОЙ!

Бензопила — это важный инструмент для дачника или хозяина частного дома. Этот инструмент один из самых травмоопасных среди всей техники для сада. Причина множества бед – не желание владельцев изучить инструкции, а также излишняя уверенность в своих силах.

Alpme.ru-Высотные (Bhadraksa) КАК ПО УМУ РАССЧИТАТЬ ТРОЛЛЕЙ (Tensioned Lines)

Как натянуть троллей используя стандартную таблицу расчета углов известно многим. И конечно в 90% случаев этого вполне достаточно, чтоб на глазок прикинуть угол, для стандартного веревочного распускаемого троллея, который мы обычно используем в веревочном доступе для передвижения туловища в горизонте. Есть так же несколько правил, которые необходимо предпринять для снижения риска… http://blog.safework4you.com/2017/10/tensioned-lines…

Alpme.ru-Высотные (Bhadraksa) ОТТЯЖКИ И ОЦЕНКА СТЕПЕНИ РИСКА.

Оттяжка — перенаправление пути рабочей и страховочной веревок от точки закрепления, чтобы избежать перетирания и других потенциальных причин повреждения рабочей и страховочной веревок или предоставить более удобную рабочую позицию специалисту веревочного доступа.

Другими словами определения оттяжки делится на две части! Оттяжки используются для защиты веревок от опасных для жизни повреждений, а так же для более удобной рабочей позиции специалиста веревочного доступа.

Большинство мировых школ веревочного доступа, учитывают угол оттяжки от точки закрепления при оценке рисков, оставляя фактор опасности
повреждения веревок, при отказе точки закрепления оттяжки или же веревки стропы оттяжки. Если данная оттяжка была организованна для удобной рабочей позиции специалиста веревочного доступа, ничего страшного не произойдёт. Но если данная оттяжка использовалась для отклонения рабочей и страховочной веревок от трубы температура которой 500 градусов по Цельсию, то это является уже смертельной опасностью, так как обе веревки переплавятся в среднем за 3-4 секунды.

В подобных ситуациях стоит составлять оценку рисков не только на базе учитывая угол от точки закрепления, а использовать принцип двойной защиты! Две точки закрепления, две оттяжки, два карабина, вне зависимости от угла оттяжки от точки закрепления.
http://blog.safework4you.com/2017/10/blog-post_30.htm..

Alpme.ru-Высотные (Bhadraksa) ПРО ПРОТЕКТОРА.

Многие альпинисты не используют протекторов, а ведь это грубое нарушение ТБ. И многие думают что пожарный рукав решение всех проблем, но это не так!

Протектор из пожарного шланга — это слабая защита. Он годится для защиты от грязи и протирания.
Для защиты от перерезаний любого свойства, он не годится совсем.
По тесту:
— от рубероида годится (чтобы не пачкать веревку)
— от бетона годится (бетон как раз может перетирать, как наждак, чем мы постоянно пользуемся на стройке, если ножа нет рядом). Хотя бывали случаи когда кусочек щебня протыкал протектор и дальше коцал уже веревку)
— от незавальцованной жести уже не годится. Скорее всего, конечно веревка сомнет жестянку до того как перережется протектор, но может быть и наоборот.
— перерезание листом железа — это как раз пример из жизни. Так лишилась девственности ИРАТА — у них работник перерезал веревки в протекторах об лестницу.

— перерезание об двутавр — так недавно разбился человек на дымовой трубе в Омске
фото края ниже

Резюме такое — мы рекомендуем, очень настойчиво обзавестись всем тросовым или цепными протекторами. Это когда по опасному месту вы пускаете трос/цепь. Веревка мимо троса тоже идет, но без нагрузки.
Альтернатива — протектор из кольчуги.

Alpme.ru-Высотные (Bhadraksa) ПРОФЕССИОНАЛЬНЫЕ ЗАБОЛЕВАНИЯ ПРОМЫШЛЕННЫХ АЛЬПИНИСТОВ.

Все потенциальные болезни связаны с нашей работой, вытекают из трех проблем. Наша работа, сидячая, к тому же еще и висячая, а иногда еще и связана с нагрузками в безоп***м пространстве. Вокруг этого все и крутится!

Не буду вдаваться глубоко в медицинские термины, так как не очень силен, но попытаюсь обратить внимание на потенциальные проблемы, со стороны практика, и рассказать, как этого можно попытаться избежать по-простому, доступным языком.
Избыток жидкостей в организме и что с этим связанно:

Если регулярно пить мочегонные напитки типа натурального кофе, перед вывеской, можно поиметь возможность растянуть себе мочевой пузырь. Как следствие, заполучить проблемы с почками, недержанием мочи, и узнать, что такое простата, и где она находится. Горячий кофе, особенно в холодную погоду, это точно не то, что нам нужно для того, чтоб чувствовать себя хорошо. Натуральный кофе, отличный тонизирующий напиток, но эта такая гадость, что организм от него пытается избавиться как можно быстрее, если добавить фактор того, что в холодную погоду наш организм пытается избавиться еще и от лишней воды, чтоб не тратить лишнюю энергию на ее обогрев, получается ужасный эффект. Все это организм сбрасывает в мочевой пузырь, а туалета рядом нет! Мы терпим, нам лень потом жумариться 50м вверх, вроде еще нормально, дотяну до земли. Как следствие, помимо того, что тело пережато обвязкой, мы еще и напрягаем все внутри, чтоб не обмочиться раньше положенного времени. Как результат, можно от этого поиметь много проблем со здоровьем, и не надо относиться к этому как к фигне. Вода пускается в организме по малому кругу, токсины вбрасываются обратно в организм, почки и простата незаслуженно напрягаются, мочевой пузырь растягивается до неприличия, но настоящий сюрприз ждет в момент возвращения в полное оп***е пространство. Обвязка расслабляется после снятия нагрузки, тело выравнивается, и тут понимаешь, что это пиз….ц.

Очень рекомендую не злоупотреблять данной темой, особенно на регулярной основе. Нужно внимательно просчитывать, чего и сколько пить перед работой, не забывать ходить в туалет перед работой, в крайнем случае, если нет вариантов, есть специальные приспособы, для того, чтоб можно было мочиться на высоте, так сказать без отрыва от производства. Стоят дополнительных расходов, но наше здоровье бесценно!

Геморрой:

Еще одна деликатная тема, с которой сталкиваются многие мужчины и женщины к определенному возрасту. Его можно поиметь и без работы на веревки, но при сочетании нескольких факторов, можно поиметь в десятки раз быстрее.

При регулярном использовании обвязок альпинистского типа без сидушки, можно поиметь геморрой гораздо быстрее чем с сидушкой. Проблема в том, что данный тип обвязок разрабатывался для улавливания падающего альпиниста/скалолаза, а не для рабочего позиционирования. Те, кто использовал когда-либо спелео обвязки, может увидеть конструктивные различия. При длительном висении в обвязках альпинистского типа без сидушки, она раздвигает ягодицы, со всеми вытекающими последствиями. Если к этому прибавить, не правильное питание, а еще и какие подъемы тяжестей регулярно на работе, то если еще у Вас нет геморроя, будьте уверены, у Вас он скоро появится.

Проблемы с позвоночником:

Наша спина находится в постоянной нагрузке! Если мышцы спины не достаточно развиты для регулярных задач которые приходится выполнять, то можно получить позвоночную грыжу, смещение позвоночника, или еще Бог знает, что еще.

Есть специальная техника для подъема грузов в ручную на земле. Мы же иногда поднимем грузы в полном безоп***м пространстве. Иногда эти грузы могут равняться нашему весу, либо превышать его. Очень важно использовать грамотную технику подъема, и при необходимости и механизмы для подъема больших грузов, а не рвать спину, мышцы, и снаряжение. В один день просто хрустнет, и все, инвалид на всю жизнь.

http://blog.safework4you.com/2017/09/blog-post_9.html

Alpme.ru-Высотные (Bhadraksa) УЗЛЫ ВОСЬМЕРКА И ПРОВОДНИК.

Думаю многие слышали, что узлы Восьмерка и Проводник имеют шанс развязаться. Но почему у одних это случается, а у других нет? В чем отличие между способами вязания узлов, и как различить неправильно (потенциально опасный) завязанный узел, от узла завязанного правильно!

На картинке четыре узла, думаю, что на вид они абсолютно одинаковые, и все завязаны правильно, но это не так. Два из них (один Проводник и одна Восьмерка), потенциально опасны если за ними не вести постоянное наблюдение.

Обратите внимание на узлы под номером 1 и 3. Короткие концы, на обоих узлах, выходят сверху, а не как на узлах под номером 2 и 4. При нагрузке основного (длинного конца) в узлах под номером 2 и 4, короткий конец прижимается петлей от длинного конца, что не дает узлу развязаться. В узлах под номером 1 и 3, свободный конец, со временем, если за ним не следить, будет постоянно норовить, вывалится из узла. Так как он не прижат основным (длинным концом).
http://blog.safework4you.com/2017/10/blog-post_28.html

Alpme.ru-Высотные (Bhadraksa) ИСТОРИЯ ВОЗНИКНОВЕНИЯ ПРОМЫШЛЕННОГО АЛЬПИНИЗМА.

Промышленный альпинизм как вид деятельности появился в начале ХХ века в США. Тогда начинали строиться небоскрёбы, гидроэлектростанции, заводы и фабрики становились всё выше, потому появилась потребность в новом подходе к выполнению работ на высоте.
Во время строительства Плотины Гувера в начале 30-х годов возникла необходимость укрепить стены каньона, скальная порода которых была подвержена разрушениям из-за постоянно замерзающей и оттаивающей воды. Справиться с этой задачей попытались профессиональные горняки-шахтёры. Но использовали они одинарную верёвку и примитивное по современным меркам снаряжение, плюс уровень альпинистской подготовки был явно недостаточен, что привело к большому количеству жертв от падения с высоты.
В Советском Союзе промышленный альпинизм возник в сложное для страны время – в период Великой Отечественной войны. Во время блокады Ленинграда альпинисты Ольга Фирсова, Александра Пригожева, Алоиз Земба и Михаил Бобров маскировали золотые шпили, предотвращая тем самым возможность фашистам вести по ним прицельный огонь.
В 1964 году в списке профессий появился такой пункт как «скалолаз-монтажник». Люди этого рода деятельности занимались высотными работами по расчистке и укреплению горных склонов для строительства ГЭС. Основателем этой профессии считается мастер спорта СССР И. А. Галустова.
С 1970-х годов в снаряжении скалолаза-монтажника возникает современная альпинистская верёвка и надёжное профессиональное оборудование. Промышленный альпинизм в своём современном виде стал успешно использоваться в начале 1980-х годов.

Alpme.ru-Высотные (Bhadraksa) ТРОСОВЫЙ АНКЕРНЫЙ СТРОП.

Это универсальность и надежность, которую стоит взять на вооружение, и не пытаться отрицать.
Были объекты, где веревки на перегибе, лежат на 2, 5мм (нарезанной лазером) нержавеющей пластине, жестяные козырьки отдыхают. Долго можно выдумывать, что использовать в виде веревочных протекторов, вариантов много! Но не один из них, не сравнится по универсальности, и одновременно надежности, с тросовый анкерный стропами (слингами). Вот уж действительно панацея от всех бед, в грамотных руках, и естественно с головой на плечах.
Короткий обзор серийных моделей сертифицированных по BS EN795B:
На данный момент, на рынке, существует три известных производителя данной продукции. Lyon Equipment, Singing Rock и DMM Professional, (Petzl похоже, просто тормозит). Будьте внимательны при выборе данных изделий, и не приобретите по ошибке тросовый строп BS EN13414. При всей внешней схожести, и более низкой цене (в 2-3 раза), данного типа стропы являются грузовой версией данного изделия, и не проходят дополнительные проверки на качество изделия, так как не являются средствами индивидуальной защиты СИЗ класса 3.
Lyon Equipment, из опыта использования, самые удачные из всех. Продаются в двух версиях, из гальванизированного троса, и нержавеющего. Удачные коуши(не большие не меленькие), продаются разных размеров. Изготовлены из 7мм троса, имеющий внешнюю защиту из армированного PVC шланга. Стандартные размеры Size: 0.5m 0.75m, 1m, 1.5m, 2m, 3m. Под заказ у Lyon Equipment, можно заказать любую длину. Lyon Equipment, первым начал выпускать тросовые анкерные стропы, и с годами модели претерпели некоторые изменения в пользу техников, которые их используют.
DMM Professional, те же характеристики, что и у Lyon Equipment, чуть хуже с доступными размерами, и только гальванизированная версия. Большим минусом является использования не армированной внешней защиты из PVC шланга. Как результат, при активном использовании, через год, трос протирает шланг и торчит из него.
И замыкает линейку Singing Rock. Трос более тонкий, нет коушей на концах, а просто обжатые петли. Опять же меньше доступных размеров. И самое неприятное, это то, что весь строп (включая концевые петли), запаян в тонкий PVC шланг (без армирования). Что приводит его в ужасный вид, уже после 6 месяцев активного использования.
Выбор за Вами, по безопасности, все три модели, являются одинакого безопасными.
http://blog.safework4you.com/2017/06/lyon-equipment-w..

Alpme.ru-Высотные (Bhadraksa) УЗЛЫ: О ПОТЕРИ ПРОЧНОСТИ ВЕРЕВКИ.

Практически веревку невозможно использовать, пока на ней не завязан хотя бы один узел, разве что только с заводским коушем. Но, сразу же, как только на веревке завязан узел, ее прочность уменьшается. Например, при величине объявленной прочности 2350 кг после завязывания на его конце узла “Восьмерка” прочность падает до 1290 кг. Или, если коэффициент надежности веревки (отношение прочности к номинальной нагрузке – в данном случае 100 кг, что приблизительно равно весу одного верхолаза-канатчика с его личной экипировкой и транспортируемым грузом) вначале равен 23, сразу после завязывания узла уменьшается до 13. Почему это происходит?

Обычно силы, действующие на нагруженную веревку без узлов, распределяются равномерно по всему ее поперечному сечению, т.е. все нити, из которых она состоит, натягиваются одновременно.
Если веревка перегибается, как это происходит в петле любого узла, силы при нагружении распределяются неравномерно. Поэтому одни нити меньше натягиваются при нагружении веревки, чем другие. Часть нитей, находящихся на внешней стороне дуги, натягивается довольно сильно. В зоне перегиба возникают и поперечные усилия, которые суммируются с продольными и дополнительно нагружают нити веревки. Вследствие комбинированного действия сил растяжения и сдвига веревка оказывается слабее там, где есть перегиб, чем на прямолинейных участках. Чем сильнее она изогнута, тем в большей степени уменьшается ее прочность.

Поведение узлов при медленно нарастающей нагрузке до момента разрыва исследовалось много раз. На основе многократных испытаний опубликован ряд данных, которые показывают, на сколько процентов уменьшается прочность данной веревки при завязывании того или иного узла.

Поведение узлов при динамическом рывке различно. Поэтому с точки зрения безопасности подобные данные надо просто принимать к сведению. Знайте! узлы различных видов
— уменьшают прочность на 30-60%;
— чем меньше радиус кривизны в месте изгиба и больше сдавливание веревки, тем сильнее уменьшается ее прочность;
— наличие узлов не меняет динамических свойств веревки.

В промальпинизме применяются только те узлы, которые отвечают следующим требованиям:
— имеют большую прочность на разрыв;
— под нагрузкой не развязываются и не ползут по веревке;
— максимально соответствуют целям, в которых используются;
— легко и быстро развязываются независимо от диаметра и состояния веревки – твердая ли она, мягкая, грязная, мокрая и т.д.;
— правильные способы завязывания усваиваются легко и недвусмысленно.

Alpme.ru-Высотные (Bhadraksa) Petzl Delta P11 8B на обвязках AVAO и NAVAHO.

Думаю многие знают эту Дельту хорошо в глаза, многие используют на своих рабочих обвязках, но более чем уверен, что мало кто знает о оригинальном предназначении пластиковой вставки.

А прямая функция данной примочки, это удерживание Дельты в вертикальном положении в различных ситуациях. Проблема заключается в том, что для более низкого расположения Croll-я и компактности изделия, Petzl решил использовать именно 8мм Дельту, но
у нее есть одно не соответствие к стандарту EN 361. По малой оси Дельта держит только 10kN, а по длинной оси 25kN, так как по требованиям стандарта EN 361, все силовые узлы в обвязке должны выдерживать минимум 15kN. Было найдено простое, легкое решение!

Кто использует в работе Petzl Delta P11 8B на обвязках, следите за своей пластиковой примочкой, и положением Дельты. Не снимайте ее с Дельты, и если по каким то причинам Вы ее потеряли или поломали, но продолжаете пользоваться Дельтой в той же конфигурации, рекомендую приобрести себе новую, стоит она копейки. А в обвязках AVAO BOD CROLL FAST и NAVAHO BOD CROLL FAST, является важным элементом через который распределяется нагрузка от страховочной передней точки А, через Croll к беседке.
http://blog.safework4you.com/2017/03/petzl-delta-p11-..

Alpme.ru-Высотные (Bhadraksa) Эффективность Petzl ID и PRO-TRAXION в системах подъёма грузов. Значения, указанные для ID, приблизительно характеризуют и остальные аналогичные спусковые устройства. Источник: petzl.com

Alpme.ru-Высотные (Bhadraksa) КАРАБИНЫ В ПРОМЫШЛЕННОМ АЛЬПИНИЗМЕ.

Тип, материал и форма карабинов, которые требуются для минимального набора снаряжения, зависят от того, где и для каких целей он используется.
Обязательное правило — все карабины, которые используются для страховки и закрепления, должны быть муфтованные. Немуфтованные карабины могут использоваться только для вспомогательных задач и только там, где есть надежда на постоянную нагрузку. Подвеска оборудования и материалов на немуфтованных карабинах допускается в случае, если это не угрожает жизни и здоровью окружающих мирных жителей
Есть правило использования карабинов. «Подобное к подобному». Если вы используйте устройство из дюралюминия (спусковое, страховочное, зажим или блок), для него лучше подобрать карабин из дюралюминия, если устройство из стали, то желательно использовать также стальной карабин. Это не всегда актуально, но часто позволяет продлить срок службы карабина (дюралевому устройству обычно достается меньше от стального карабина, чем дюралевому карабину от стального устройства).
Допустимая нагрузка на разрушение у карабинов разная, но минимально возможная для использования в качестве страховки — 2 200 кг (22 кН) в продольном направлении при закрытой муфте. Это — достаточное условие, а более мощные карабины требуются обычно там, где кратковременные нагрузки могут достигать больших величин. Поперечные нагрузки на разрушение у таких карабинов обычно составляет 900 кг (9 кН). Поэтому опасно, когда карабин встает в устройстве на излом или поперек. И именно поэтому лучше под каждое устройство и задачу подбирать свой карабин.

Alpme.ru-Высотные (Bhadraksa) ТИПЫ КАРАБИНОВ.

— Универсальный. Это карабин маленького размера несимметричной трапециевидной формы. Используется обычно в качестве карабина для организации станций для закрепления веревок и на самостраховочных усах.
— Овальный. За счет симметрии по продольной оси, он имеет наименьшие шансы встать в устройстве или в точке вщелкивания поперек нагрузки или на излом. Минус такого карабина — довольно маленький диапазон раскрытия защелки.
— Трапециевидный. Эти карабины наиболее прочные на разрыв. Но не всегда могут использоваться с определенным видом страховочных устройств. Не могут использоваться со стропой и лентой. Главный недостаток — встать поперек или на излом в устройстве у такого карабина шансов много.
— Треугольный. Эти карабины пришли к нам из истории. Я не представляю, какие у них могут быть преимущества. Недостатки — такие же как и у трапециевидных карабинов. Впрочем, они самые дешевые.
— «HMS». Самый универсальный карабин, имеющий наибольшее раскрытие защелки. Удобен для спускового устройства, самостраховок и организации точки закрепления веревок.
— Монтажные карабины. Применяются для страховки на конструкциях. Задача — скорость перемещения и страховка за металлические конструкции.
— Рапиды. Карабины, не имеющие защелки. Блокировка происходит за счет резьбовой муфты. Применяются для вспомогательных целей (например, крепление конструкций) и для организации стационарных страховочных или самостраховочных звеньев.
— D-Rings. Применяются в тех случаях, когда нужно использовать карабин со стропой или лентой. Рабочая нагрузка — поперечная. Применяются, например, в системах.
— Delta. То же, что и в случае D-Rings.
— Карабины для труб и балок. Страховочные карабины для организации перемещения вдоль трубы, балки или троса.

Alpme.ru-Высотные (Bhadraksa) РАБОЧИЕ НАГРУЗКИ ДЛЯ СПУСКОВЫХ УСТРОЙСТВ.

Рабочая нагрузка — эта та нагрузка с которой по мнению производителя можно работать комфортно и безопасно. От максимальной рабочей нагрузки до предела прочности, перекусывания веревок и поломок очень далеко. Например для букашки рабочая 130, разрушающая не менее 1500. Какие именно будут проблемы при превышении рабочей производители говорят не всегда, но наиболее очевидные: труднее удерживать свободный конец, труднее разблокировать. Какие это несет опасности понятно. Иными словами производитель как бы говорит — до ХХХ кг с этой железкой работать удобно, дальше — будьте очень внимательны и помните, что еще немного груза и пользоваться станет совсем невозможно (не удастся разблокировать). Кто тягает грузы могут запросто вспомнить как себя ведут риги и гриши под нагрузкой в 200-250кг. На обычных объектах мы разумеется ничего не превышаем, но и придумать, и вспомнить примеры, когда этот параметр становится важен очень легко.

Собственно цифры:
Риг: 150 кг (200 кг — Петцль дает предел для спасработ и с дополнительным карабином)

Айди: 150кг (100кг — для верхней страховки, 200 кг — для спасов, 250 — если очень надо. Петцль так и пишет:))

Букашка: 130кг разрушающая не менее 1500

Восьмерка: 200кг разрушающая не менее 2000

Десантер: 150кг

К слову сказать я видал сломанные букашки, это на счет безумного запаса прочности — была вывернута вся центральная пластина. Это конечно при ловле бревен случилось, но тем не менее букашка — это не труба.

Alpme.ru-Высотные (Bhadraksa) О САМОСТОЯТЕЛЬНОЙ УДАЛЕННОЙ РАБОТЕ.

Работать одному, если говорить об этом с точки зрения общего понятия, и не разрешено и не запрещено. Грамотное рабочее законодательство не выставляет жестких границ, да или нет, а подходит к вопросу более гибко.

Например, есть куча специальностей и видов работ, которые традиционно, исторически выполняются одним человеком. Взять, водителя такси, или настройщика роялей. Наверно выглядело бы дико, если Вы пригласили его настроить своему чаду фортепьяно
, и приперлись бы два здоровых дядьки. На вопрос с Вашей стороны, почему вдвоем? А нам нельзя по одиночки по закону!

Но в то же время есть куча специальностей и видов работ, где появляться на рабочем месте одному, крайне нежелательно, опасно для жизни, или вообще смертельно опасно!

Так как же провести границу по уму раз и навсегда, чтоб не переписывать законодательства и правила каждые пару лет, с появлением новых специальностей или технологий производства тех или иных работ?

Как всегда, Британцы впереди планеты всей в вопросах грамотного подхода к безопасности на рабочем месте. У них есть отдельные правила о работе в одиночку.

Следуя их правилам, необходимо провести оценку ситуации, такой вариант оценки степени риска. Если человек, выполняет какие-либо виды работ, и с ним что-то случится?

Насколько быстро его могут найти и ему помочь?

Как быстро его могут доставить в медицинское учреждение, и вообще насколько есть вероятность, что что-то может случиться, и были ли прецеденты?

Естественно как всегда в Британии, за это ответственность несет работодатель, под категорию попадают как работники компании, так и подрядчики, работающие по трудовому договору с компанией.

Если ответственным лицом принято решение, что работать в одиночку достаточно безопасно, соответствующая запись должна быть добавлена в оценку степени риска, если речь идет о промышленных объектах. Если же компания занята в индустриях где не требуется проводить оценку степени риска, то в компании должен быть специальный документ, процедуры производства работ в одиночку. Понятно, что такой документ должен быть только в компаниях, где данные виды работ производятся регулярно, либо на постоянной основе.

Теперь два слова о веревочном доступе. Данный вид деятельности покрывают в Британии два правила и одна рекомендация.

Правила проведения работ на высоте, где прописаны требования наличия плана спасения, естественно, если Вы работаете один, и с Вами что-то случилось, вряд ли Вы сможете себе сами помочь. И правила работ в одиночку. Оценивая риски, и вероятность возникновения ситуации, когда может понадобиться помощь, а также прецеденты (подобные ситуации случаются, хоть и не часто). Не один вменяемый работодатель, не возьмет на себя такую ответственность.

И менее важные по значению, но не менее важные по смыслу, рекомендации IRATA из свода правил. Минимальная команда, работающая на высоте определяется планом спасения для конкретной задачи. Если Вы работаете один, сам на себя, и уверены, что с Вами ничего не случится, тогда Вас это сообщение не касается.
http://blog.safework4you.com/2017/04/blog-post.html

Alpme.ru-Высотные (Bhadraksa) БЛОКИ С БОЛЬШИМ ПРИСОЕДИНИТЕЛЬНЫМ ОТВЕРСТИЕМ.

Многие производители снаряжения предлагают блоки, присоединительные отверстия которых могут вместить вплоть до 3-х карабинов. Для чего это может понадобиться нам на практике? Рассмотрим некоторые способы применения.

Alpme.ru-Высотные (Bhadraksa) ГРУДЬ ИЛИ СПИНА?

Страховочное устройство может быть присоединено как к грудной так и к спинной точке
обвязки. Так какую же выбрать?

Грудная точка А:
+проще визуально контролировать состояние страховочного устройства и регулировать его положение на верёвке
+ проще присоединять страховочное устройство к обвязке и отсоединять его
+ в случае повисания на страховочном устройстве работник принимает комфортное положение
+ спасателю проще оказать помощь пострадавшему, висящему на грудной точке, нежели на спинной
— страховочное устройство и его ус занимают «рабочее пространство» перед работником

Спинная точка А:
+ «рабочее пространство» перед работником свободно от страховочного устройства и его уса
+ расположение страховочного устройства и страховочной верёвки со стороны спины может снизить вероятность их повреждения при работе с режущим инструментом

— при срыве и повисании на спинной точке голова работника подаётся вперёд, что может привести к травме при работе около стены, металлоконструкций и т.п.
— если страховочное устройство находится вне зоны видимости, то усложняется контроль за его состоянием, сложнее регулировать его положение на верёвке
— сложнее присоединять/отсоединять страховочное устройство
— в случае повисания на страховочном устройстве работник принимает значительно менее комфортное положение, по сравнению с использованием грудной точки
— спасателю может быть сложнее оказать помощь пострадавшему, висящему на спинной точке

Специалисты IRATA в 2019-м году в учебном центре Gridins провели интересный эксперимент, чтобы сравнить последствия срыва при использовании грудной и спинной точек А. В свободном пространстве был натянут баннер, имитирующий стену. Несколько испытателей поочерёдно спускались по верёвкам, навешенным вдоль баннера. В какой-то момент верёвка, по которой осуществлялся спуск, перерезалась, и испытатель повисал на страховочном устройстве. Эксперимент выявил, что в момент срыва и повисания на страховочном устройстве, присоединённом к спинной точке обвязки, возникает импульс, толкающий голову работника вперёд, что могло бы привести к травме головы, будь вместо баннера настоящая стена.
http://alpxsafety.ru/blog/equipment/2017/02/02/dorsal..

Tags: Как поднять груз с помощью троса и блоков

Полиспаст — натягиваемый многими верёвками или канатами, грузоподъёмное устройство, состоящее из собранны…

помогите с задачкой по физике | Автор топика: Тамара

с помощью троса, перекинутого через неподвижный блок, равномерно поднимают груз на высоту 13 м, прикдадывая силу 1,5 кН. При этом совершается работа, равная 20,7 кДж. Чему равен КПД?

Валентина КПД= А Денис / А Руслан , полезная работа это подъём А=FS = 1500*13=19500 Дж
теперь делим полезную работу на всю, которая в условии и умножаем на 100 %

Как поднять груз с помощью веревки

Кандидат технических наук Д. ЗЫКОВ.

В основе почти любого «классического» механизма лежит рычаг или блок. Самый простой рычаг — это обычная палка, лежащая на опоре. У рычага есть два плеча — длинное и короткое. Плечо — это расстояние от точки опоры рычага до точки приложения силы. Если быть совсем точным — до линии приложения силы (рис.1).

Замечательное свойство рычага заключается в том, что если к его короткому плечу приложить силу, повесить, например, груз, то, чтобы поднять его или удержать рычаг в равновесии, к длинному плечу придётся приложить силу во столько раз меньше веса груза, во сколько длинное плечо больше короткого. Произведение величины силы, приложенной к рычагу, на величину длины плеча этой силы в механике называется моментом силы. Размерность его — Ньютон×метр (Нм). Рычаг находится в равновесии, когда момент силы, приложенной к длинному плечу, равен моменту на коротком плече и направлен в противоположную сторону.

Этим свойством рычага люди научились пользоваться очень давно. Если нужно поднять тяжёлый камень, достаточно засунуть под него длинную крепкую палку или металлический лом, подложить под этот рычаг камешек поменьше или полено и нажать на длинный конец. Таким же образом можно поднять шкаф или холодильник (рис. 2). Между прочим, именно с использованием свойств рычага делают тележки для перевозки мебели в магазинах.

Не менее интересен блок. Это всего-навсего насаженный на прочную ось небольшой ролик с перекинутой через него верёвкой. Если ролик закрепить на высокой опоре, то будет удобно поднимать на верёвке небольшие грузы, например ведро с краской. Но никакого заметного облегчения в работе так не получить. А вот если взять два ролика, то можно здорово выиграть в силе.

Давайте посмотрим на схему (рис.3А). Представим, что верёвка двумя концами неподвижно закреплена на потолке, а внизу на ней висит ролик с приделанным к его оси крючком. На крючке висит груз. Верёвка — штука гибкая и способна сопротивляться только растяжению. Как говорят про такие предметы — на изгиб и сжатие они не работают. И в самом деле, гнуть, вязать и комкать верёвку можно сколько угодно, а порвать (если, конечно, она хорошая) сложно. Так вот, верёвка передаёт усилие от веса груза на точки подвески, причём каждая её ветвь ровно половину.

Теперь заменим одно из креплений верёвки на блок, прицепим его ось крепко к потолку, а ролику обеспечим возможность свободно вращаться (рис.3Б). Если верёвку не удерживать, то груз, понятно, грохнется на пол. А если придерживать? А если придерживать, то вы с удивлением заметите, что груз не падает, хотя сила, приложенная к верёвке, вдвое меньше веса груза! Ещё бы, посмотрите на схему: чтобы сохранить систему в равновесии, требуется именно такая сила! Попробуйте теперь поднять груз. Окажется, что сделать это намного легче, чем на верёвке, просто перекинутой через блок. Правда, времени подъём займёт больше. А почему? Да потому, что, выигрывая вдвое в силе, мы проигрываем во столько же раз в расстоянии. И это тоже отлично видно на схеме.

Если вместо одной пары блоков взять две, то выигрыш в силе ещё раз удвоится, а если три — то выигрыш возрастёт в шесть раз (рис.4). Такая конструкция из нескольких блоков называется полиспастом. Их используют в подъёмных кранах, лифтах, на парусниках для подъёма парусов. Из нескольких блоков можно сделать небольшую, но очень удобную и полезную в хозяйстве ручную лебёдку.

Подписи к иллюстрациям

Рис. 1. Плечо рычага — это расстояние от точки опоры (она обозначена буквой А) до линии приложения силы F. Величину плеча на рисунке легко определить, построив из точки опоры перпендикуляр к линии действия силы и измерив его длину. Это и будет плечо. Заметим: длина рычага (обозначена буквой L) всегда больше (или в крайнем случае равна) величины плеча. Рычаг находится в равновесии, если моменты сил, приложенных к его плечам, равны друг другу и направлены в противоположные стороны.

Рис. 2. Конструкция тележки для перевозки мебели основана на свойствах рычага. Момент от веса груза: М1 = F1h1. Чтобы груз приподнять, нужно приложить в горизонтальном направлении силу . Когда тележка наклонится, удержать её позволит сила . Заметим, что F’2>F2 из-за того, что по мере «заваливания» тележки плечо h1 увеличивается, а плечо h2 — наоборот, уменьшается.

Рис. 3. Вес груза, подвешенного на перекинутой через блок верёвке, передаётся к точкам подвески каждой её ветвью поровну. В нашем случае натяжение каждой ветви составляет 1 кг (вес груза и блока 2 кг). Чтобы уравновесить подвешенный на блоке груз, нужен противовес, имеющий вдвое меньшую массу.

Рис. 4. Пара блоков, один из которых закреплён на неподвижной оси, а другой — на свободной, называется полиспастом. Если блоков два — это простой полиспаст, если четыре (то есть две пары) — это двукратный полиспаст, если восемь — четырёхкратный. Сколько блоков в полиспасте, во столько раз при подъёме можно выиграть в силе и ровно во столько же раз проиграть в расстоянии.

Подыскивал интересный практический материал о вытаскивании застрявшей техники и наткнулся на просторах интернета на старую советскую книгу «Руководство по эвакуации танков с поля боя» ВОЕНИЗДАТ НКО СССР 1942 год

В ней очень простым и доступным языком изложено применение полиспастов для извлечения застрявшей техники из грязи, включая примеры расчетов необходимого усилия, причем исходя из практики, полученной уже во время войны. Зная ценность каждого танка в бою, считаю что к написанию книги в 1942 году отнеслись с должной долей внимания. Нам остается только подставлять значения массы нашего авто, усилия лебедки и благодарить дедов за обобщение и систематизацию полученного практического опыта по вытаскиванию застрявшей бронетехники.

СПОСОБЫ ВЫТАСКИВАНИЯ ЗАСТРЯВШИХ ТАНКОВ С ПОМОЩЬЮ ПОЛИСПАСТОВ

(Способы, требующие применения больших тяговых усилий)

Для вытаскивания тяжело застрявших танков в большинстве случаев необходимо приложить большие тяговые усилия, превышающие вес самого танка в 2,5—3,5 раза. Имеющиеся в войсковых частях тракторы и тягачи в таких случаях не в состоянии без вспомогательных устройств создать необходимые по величине тяговые усилия для вытаскивания. Поэтому для вытаскивания тяжело застрявших танков приходится применять полиспасты.

Применение и устройство полиспастов

Полиспаст представляет собой механизм, предназначенный для подъема и передвижения тяжестей, состоящий из тягового приспособления, системы блоков и троса. Увеличение усилий в полиспасте происходит за счет уменьшения скорости движения передвигаемого предмета по сравнению со скоростью выбирания троса тяговым приспособлением (лебедкой или буксирным крюком движущегося трактора). Выигрыш в силе полиспаста обратно пропорционален изменению скорости. Для вытаскивания танков применяются простые полиспасты (рис. 5) и прогрессивные (рис. 6).

Получаемые при помощи простого полиспаста результативные увеличенные усилия, приложенные к крюкам вытаскиваемого танка, определяются следующей формулой: S=PnK, где:

S — результативные увеличенные усилия, приложенные к крюкам вытаскиваемого танка;
Р — начальное тяговое усилие, развиваемое лебедкой или трактором;
n — число ветвей троса полиспаста;
К — максимальный коэффициент потерь усилий за счет сопротивления в блоках и на изгибе (при 3—12 блоках в полиспасте), равный 0,8.

Пример 1. Требуется вытащить танк.
Необходимое тяговое усилие для извлечения танка (установленное при данном виде застревания) — 35 т. На месте есть тяговое приспособление (лебедка или трактор ЧТЗ-60 или 65) с тяговым усилием Р = 5 т. Определим необходимое количество ветвей в полиспасте, пользуясь формулой S = РnК. Для этого подставим в нее вместо буквенных обозначений цифровые величины, а именно: S = 35 т; Р = 5 т; К = 0,8, и в результате получим следующее выражение: 35 = 5 • n • 0,8, откуда n

9, т. е. количество ветвей в полиспасте будет равно девяти. Количество однороликовых блоков, необходимое для полиспаста (m), определяется по числу ветвей троса (n), уменьшенному на единицу, т. е. т = n — 1; в данном случае т = 9 — 1=8.

При применении двухроликовых блоков количество их уменьшается вдвое, т. е. в данном случае потребуется только четыре блока, что и показано на рис. 5. При применении трехроликовых блоков количество их соответственно уменьшается втрое. Если необходимо создать большие тяговые усилия, число ветвей троса и блоков в полиспасте следует соответственно увеличивать. Прогрессивный полиспаст (рис. 6) состоит из двух или нескольких простых полиспастов Прогрессивный полиспаст используют для создания тяговых усилий свыше 50 т для уменьшения количества блоков и троса в полиспасте и если на месте есть лишь маломощные тяговые приспособления (ручные лебедки до 5 т или тракторы ЧТЗ-60 или 65). Получаемые при помощи прогрессивного полиспаста результативные увеличенные тяговые усилия, приложенные к крюкам вытаскиваемого танка, определяются по формуле S=2mPnK, где:

S — результативные увеличенные усилия, приложенные к крюкам вытаскиваемого танка;
m — число прогрессивных блоков. Под прогрессивным блоком понимается дополнительно вводимый в систему простой полиспаст, состоящий из одного блока;
Р — начальное тяговое усилие, развиваемое лебедкой или трактором;
n — число ветвей троса полиспаста;
К — максимальный коэффициент потерь, равный 0,8.

Пример 2. Необходимо вытащить тяжело застрявший танк.
Необходимое для извлечения тяжело застрявшего танка тяговое усилие (установленное при данном) виде застревания) равно 140 т. На месте имеется тяговое приспособление (лебедка, трактор ЧТЗ-60 или 65) с тяговым усилием P = 5 т. Задаемся количеством ветвей троса в основном простом полиспасте, равным 9 штукам. Подставляя численные выражения в формулу: S = 2mPnK, а именно P = 5; n = 9; К = 0,8, получаем: 140 = 2m • 5 • 9 • 0,8, откуда определяем величину т

2, т. е. находим число прогрессивных блоков, равное двум.

Анкерные устройства для крепления неподвижных блоков и лебедок обычно представляют собой закопанные в землю деревянные столбы (рис. 13).

Анкерный столб представляет собой бревно диаметром не менее 30 см или несколько бревен меньшего диаметра. Глубина (h) закапывания анкерного столба зимой 2,0 м, летом 2,5 м. Ширина анкерного колодца 1-1,2 м. Высота анкерного столба над уровнем грунта 0,6-0,8 м. Колодец после установки анкерного столба летом засыпают грунтом с камнями с проливкой и трамбованием слоями, а зимой грунтом с проливкой и промораживанием слоями. Изображенный на рис. 13 анкерный столб, установленный в зимних условиях с промораживанием грунта, выдерживает нагрузку (тяговое усилие) до 50 т, в летнее время — 10 т. В летнее время для увеличения опорного сопротивления рекомендуется соединять анкеры в сплошную анкерную стенку, ставя столбы через 1,5-2 м и укладывая деревянные прокладки из трех рядов бревен. В отдельных случаях вместо анкеров могут быть использованы находящиеся вблизи деревья, сваи, валуны, а также и тяжелые танки.

Порядок выбора требуемой схемы полиспаста (определение необходимого числа ветвей троса и блоков) в зависимости от типа танка и условий его застревания
1. Для того чтобы выбрать требуемую схему полиспаста, надо установить категорию застревания танка, которая определяется по нижеследующим признакам (табл. 2).

2. В зависимости от типа танка и установленной категории застревания определяется требуемое тяговое усилие для вытаскивания танка (табл. 3).

Примерные тяговые усилия (в тоннах), требуемые для вытаскивания танков (взяты из практики эвакуации танков с поля боя на Западном фронте).

Вышеприведенные в табл. 3 примерные тяговые усилия, требуемые для вытаскивания танков, предусматривают, что при вытаскивании машин полиспастами предварительно проведены следующие подготовительные работы:
а) сколоты лед и мерзлый грунт вокруг танка;
б) путь перемещения танка очищен от валунов, пней, свай и т. д.;
в) уклоны на пути перемещения танка уменьшены путем устройства более пологих выходов;
г) танк вывешен домкратами (при большом крене или опрокидывании на башню).

Приведенные тяговые усилия в основном рассчитаны на случаи тяжелого застревания танков, без учета возможной работы мотора и исправности ходовой части. При проведении соответствующих подготовительных саперных работ и использовании собственной мощности мотора тяговые усилия, необходимые для вытаскивания танка, могут быть соответственно уменьшены.

3. Для получения указанных в табл. 3 тяговых усилий, необходимых для вытаскивания застрявших танков, рекомендуются нижеследующие типовые схемы полиспастов (рис. 14—19). В каждом отдельном случае по требующемуся для вытаскивания танка тяговому усилию (определяемому по табл. 3) подбирается одна из шести приведенных на рис. 14—19 схем полиспаста.

Пример 3. Средний танк зимой провалился в большой водоем; его ходовая часть и моторная группа покрылись льдом, гусеницы не вращаются. Для вытаскивания этого танка 5-тонной лебедкой необходимо установить требуемую схему полиспаста (определить число блоков, количество ветвей тросов и анкеров). По табл. 2 определяем характер застревания танка, относимый в данном случае к IV категории. В зависимости же от категории застревания и типа танка определяем по табл. 3 необходимое тяговое усилие, равное в данном случае 140 т. По величине тягового усилия из рекомендуемых схем полиспаста при 5-тонной ручной лебедке выбираем схему № 5 (рис. 18), т. е. выбираем прогрессивный полиспаст, состоящий из простого полиспаста и двух прогрессивных блоков.

Необходимые инструменты и материалы

Для подъема больших грузов человек не очень силен, но он придумал множество механизмов, которые упрощают этот процесс, и в этой статье мы обсудим полиспасты: назначение и устройство таких систем, а также попытаемся сделать простейший вариант такого приспособления своими руками.

Каким образом мы упрощаем подъем грузов?

Грузовой полиспаст – это система, состоящая из веревок и блоков, благодаря которой можно выиграть в эффективной силе при потере в длине. Принцип довольно прост. В длине мы проигрываем ровно столько, во сколько раз оказался выигрыш в силе. Благодаря этому золотому правилу механики можно поднимать грузы большой массы, не прилагая при этом больших усилий. Что в принципе не так критично. Приведем пример. Вот вы выиграли в силе в 8 раз, при этом вам придется вытянуть веревку длиной в 8 метров, чтобы поднять объект на высоту 1 метр.

Применение таких приспособлений обойдется вам дешевле, чем аренда подъемного крана, к тому же, вы можете сами контролировать выигрыш в силе. У полиспаста есть две разные стороны: одна из них неподвижная, которая крепится на опоре, а другая – подвижная, которая цепляется на самом грузе. Выигрыш в силе происходит благодаря подвижным блокам, которые крепятся на подвижной стороне полиспаста. Неподвижная часть служит только для изменения траектории движения самой веревки.

Виды полиспастов выделяют по сложности, четности и кратности. По сложности есть простые и сложные механизмы, а кратность обозначает умножение силы, то есть, если кратность будет равна 4, то теоретически вы выигрываете в силе в 4 раза. Также редко, но все же применяется скоростной полиспаст, такой вид дает выигрыш в скорости перемещения грузов при совсем малой скорости элементов привода.

Как работает простая конструкция блоков?

Рассмотрим для начала простой монтажный полиспаст. Его можно получить при добавлении блоков на опору и груз. Чтобы получить нечётный механизм, необходимо закрепить конец верёвки на подвижной точке груза, а чтобы получить чётный, то крепим веревку на опоре. При добавлении блока получаем +2 к силе, а подвижная точка дает +1, соответственно. Например, чтобы получить полиспаст для лебедки с кратностью 2, необходимо закрепить конец верёвки на опоре и использовать один блок, который крепится на грузе. И у нас будет чётный вид приспособления.

Принцип работы полиспаста с кратностью 3 выглядит по-другому. Здесь конец веревки крепится на грузе, и используются два ролика, один из них мы крепим на опоре, а другой – на грузе. Такой тип механизма дает выигрыш в силе в 3 раза, это нечётный вариант. Чтобы понять, каков выигрыш в силе получится, можно воспользоваться простым правилом: сколько веревок идет от груза, таков наш выигрыш в силе. Используются обычно полиспасты с крюком, на котором, собственно говоря, и крепится груз, ошибочно думать, что это только блок и веревка.

Сложная система блоков – как рассчитать выигрыш в силе?

Теперь узнаем, как работает полиспаст сложного типа. Под этим названием подразумевается механизм, где соединены в одну систему несколько простых вариантов данного грузового устройства, они тянут друг друга. Выигрыш в силе таких конструкций рассчитывается путем перемножения их кратностей. Например, мы тянем один механизм с кратностью 4, а другой с кратностью 2, тогда теоретический выигрыш в силе у нас будет равен 8. Все вышеуказанные расчеты имеют место быть только у идеальных систем, у которых нет силы трения, на практике же дела обстоят иначе.

В каждом из блоков происходит небольшая потеря в мощности из-за трения, так как она еще тратится как раз на преодоление силы трения. Для того чтобы уменьшить трение, необходимо помнить: чем больше у нас радиус перегиба веревки, тем меньше будет сила трения. Лучше всего использовать ролики с большим радиусом там, где это возможно. При использовании карабинов следует делать блок из одинаковых вариантов, но ролики гораздо эффективнее карабинов, так как на них у нас потеря составляет 5-30 %, а вот на карабинах же до 50 %. Также не лишним будет знать, что наиболее эффективный блок необходимо располагать ближе к грузу для получения максимального эффекта.

Как же нам рассчитать реальный выигрыш в силе? Для этого нам необходимо знать КПД применяемых блоков. КПД выражается числами от 0 до 1, и если мы используем веревку большого диаметра или слишком жесткую, то эффективность от блоков будет значительно ниже, чем указана производителем. А значит, необходимо это учесть и скорректировать КПД блоков. Чтобы рассчитать реальный выигрыш в силе простого типа грузоподъемного механизма, необходимо рассчитать нагрузку на каждую ветвь веревки и сложить их. Для расчета выигрыша в силе сложных типов необходимо перемножить реальные силы простых, из которых он состоит.

Веревка и ее роль в работе полиспаста

Не стоит забывать еще и о трении веревки, так как ветви ее могут перекручиваться между собой, а ролики от больших нагрузок могут сходиться и зажимать веревку. Дабы этого не происходило, следует разнести блоки относительно друг друга, например, можно между ними использовать монтажную плату. Следует также приобретать только статические веревки, не растягивающиеся, так как динамические дают серьёзный проигрыш в силе. Для сбора механизма может использоваться как отдельная, так и грузовая веревка, присоединенная к грузу независимо от подъемного устройства.

Преимущества использования отдельной веревки состоит в том, что вы можете быстро собрать или приготовить заранее грузоподъемную конструкцию. Вы также можете использовать всю ее длину, это также облегчает проход узлов. Из минусов можно упомянуть то, что нет возможности автоматической фиксации поднимаемого груза. Преимущества грузовой веревки в том, что возможна автофиксация поднимаемого объекта, и нет необходимости в отдельной веревке. Из минусов важно то, что при работе сложно проходить узлы, а также приходится затрачивать грузовую веревку на сам механизм.

Поговорим об обратном ходе, который неизбежен, так как он может возникнуть при прихватывании веревки, или же в момент снятия груза, или при остановке на отдых. Чтобы обратного хода не возникало, необходимо использовать блоки, которые пропускают веревку только в одну сторону. При этом организовываем конструкцию так, что блокирующий ролик крепится первым от поднимаемого объекта. Благодаря этому, мы не только избегаем обратного хода, но также позволяем закрепить груз на время разгрузки или же просто перестановки блоков.

Если вы используете отдельную веревку, то блокирующий ролик крепится последним от поднимаемого груза, при этом фиксирующий ролик должен обладать высокой эффективностью.

Способы крепления веревки к грузоподъемному механизму

Теперь немного о креплении грузоподъемного механизма к грузовой веревке. Редко, когда у нас под рукой находится веревка нужной длины, чтобы закрепить подвижную часть блока. Вот несколько видов крепления механизма. Первый способ – с помощью схватывающих узлов, которые вяжутся из репшнуров диаметром 7-8 мм, в 3-5 оборотов. Данный способ, как показала практика, является наиболее эффективным, так как схватывающий узел из 8 мм шнура на веревке диаметром 11 мм начинает сползать только при нагрузке 10-13 кН. При этом вначале он не деформирует веревку, а спустя какое-то время, оплавляет оплетку и прикипает к ней, начиная играть роль предохранителя.

Другой способ заключается в использовании зажима общего назначения. Время показало, что его можно использовать на обледенелых и мокрых веревках. Он начинает ползти только при нагрузке в 6-7 кН и несильно травмирует веревку. Еще один способ заключается в использовании персонального зажима, но он является не рекомендуемым, так как он начинает ползти при усилии уже в 4 кН и при этом рвет оплетку, или даже может перекусить веревку. Это все промышленные образцы и их применение, мы же попробуем создать самодельный полиспаст.

Создаем простейший подъемный механизм своими руками

А вот если механизм для грузов нужен срочно или на один раз, а выбирать по магазинам его нет времени и жалко денег, мы расскажем, как сделать полиспаст своими руками. Хорошо, если у вас в мастерской имеются резьбовые шпильки, подшипники, блок, трос, крюк, шестеренка. Понадобится немного времени: нужно подшипники насадить на шпильку. Гайку от шпильки желательно зафиксировать, чтобы не тратить некоторую часть сил впустую на прокручивание своеобразного вала. Конец шпильки можно снабдить шестеренкой, сделав таким образом более удобный ручной привод.

Через блок перекидываем трос и крепим его на опоре, а вот на другой конец цепляем крюк, на который будем вешать груз. Также на конце троса можно зафиксировать систему строп, если характер груза не позволит его насадить на крюк. В принципе, самый простейший вариант полиспаста готов. Остается приступить к работе, соблюдая технику безопасности, которая одинакова для всех механизмов, как покупных, так и самодельных. Внимательно проверяйте все элементы на целостность перед работой, а во время работы не делайте резких движений, поднимать груз следует плавно, и, конечно, не стоит стоять под подвешенным грузом.

Полиспаст для «Чайников» | НОУ «ПромАльп», обучение профессии «Промышленный альпинист», производство работ на высотных и труднодоступных объектах

Полиспаст (от греческого «составной блок») — грузоподъемное
устройство из нескольких подвижных и неподвижных блоков,
огибаемых канатом или тросом.

(из энциклопедии)


Для тех, кто не учил в школе физику, напомню: полиспаст — это устройство, которое позволяет поднимать грузы с усилием в несколько раз меньшим, чем вес самого груза.

Рис. 1В промышленном альпинизме для сборки полиспастных систем используют одинарные или двойные блоки (рис. 1), которые крепятся с помощью карабинов, и веревку (при необходимости — тонкий стальной трос). Не буду пугать вас умными фразами — постараюсь объяснить все на пальцах.

Представьте, что вам необходимо поднять на крышу дома груз с помощью веревки (рис. 2, а). Для этого вам надо тянуть веревку с усилием чуть большим, чем вес груза. Например, при весе груза 100 кг, вам необходимо тянуть веревку с усилием более 100 кг.

На рис. 2, б показана схема простейшего (одинарного) полиспаста. Обратите внимание: здесь груз висит на двух ветвях веревки! На каждую ветвь приходится только по половине веса груза (по 50 кг). Теперь, чтобы поднять груз, вам нужно тянуть за одну ветвь с усилием чуть большим 50 кг! Блок на грузе, через который проходит веревка, беспрепятственно дает вам выбирать ее. Выигрыш в силе в 2 раза!
Вот только один момент: для того, чтобы поднять груз с помощью одинарного полиспаста, вам придется выбрать в два раза больше веревки, чем в первом случае. Это хорошо видно на рис. 2 (сравните а и б).
 

  Так незаметно мы вывели закон: «Выигрываешь в силе — проигрываешь в расстоянии».

 

    
Рис. 2


На рис. 2, в изображен двойной полиспаст. На грузе закреплено два блока, и он висит на четырех ветвях веревки. Какой вес груза приходится на каждую ветвь, и с каким усилием вы будете поднимать эту тяжесть теперь? Сколько веревки нужно выбрать? Какой получается выигрыш в силе?
Просто? Существуют более сложные полиспастные системы, но принцип везде один и тот же.
   
На рис. 3, а показана схема с одинарным полиспастом. Эта система отличается от схемы на рис. 2, б только наличием блока 2. Блок 2 не дает никакого выигрыша в силе, а только изменяет направление движения веревки.

Домашнее задание: какой выигрыш в силе получается при использовании системы, показанной на рис. 3, б?
 

    
Рис. 3

 
Полиспасты можно организовывать и без блоков, используя вместо них карабины. Но тогда надо считаться с тем, что на каждом карабине при угле обхвата веревкой 180 из-за трения придется прилагать усилие в 1,5 раза большее, чем при использовании блоков (рис. 4).

При расчете полиспастных систем необходимо учитывать следующее: чем больше диаметр ролика блока, тем больше кпд.
 

    
Рис. 4

 

НОУ «ПромАльп», Новокузнецк
январь 2007

Подъем грузов без спецтехники – как рассчитать и сделать полиспаст своими руками. Простые механизмы

Блоки используют для поднятия грузов. Блок представляет собой колесо с желобом, укрепленное в обойме. По желобу блока пропускают веревку, трос или цепь. Неподвижным называют такой блок, ось которого закреплена и при подъеме грузов она не поднимается и не опускается (рис. 1, а, б).

Неподвижный блок можно рассматривать как равноплечий рычаг, у которого плечи приложенных сил равны радиусу колеса. Следовательно, из правила моментов вытекает, что неподвижный блок выигрыша в силе не дает . Он позволяет менять направление действия силы.

На рисунке 2, а, б изображен подвижный блок (ось блока поднимается и опускается вместе с грузом). Такой блок поворачивается около мгновенной оси О. Правило моментов для него будет иметь вид

Таким образом, подвижный блок дает выигрыш в силе в два раза.

Обычно на практике применяют комбинацию неподвижного блока с подвижным (рис. 3). Неподвижный блок применяется только для удобства. Он, изменяя направление действия силы, позволяет, например, поднимать груз, стоя на земле.

Чаще всего простые механизмы используют, чтобы получить выигрыш в силе. То есть меньшей силой переместить больший по-сравнению с ней вес. При этом выигрыш в силе достигается не «бесплатно». Расплатой за него является потеря в расстоянии, то есть требуется сделать большее перемещение, чем без использования простого механизма. Однако когда силы ограничены, то «обмен» расстояния на силу выгоден.

Подвижный и неподвижный блоки являются одними из видов простых механизмов. Кроме того, они являются видоизмененным рычагом, который также является простым механизмом.

Неподвижный блок не дает выигрыш в силе, он просто изменяет направление ее приложения. Представьте, что вам надо поднять за веревку тяжелый груз вверх. Вам придется тянуть его вверх. Но если использовать неподвижный блок, то тянуть надо будет вниз, в то время как груз будет подниматься вверх. В этом случае вам будет проще, так как необходимая сила будет складываться из силы мышц и вашего веса. Без использования неподвижного блока надо было бы прикладывать такую же силу, но она достигалась бы исключительно за счет силы мышц.

Неподвижный блок представляет собой колесо с желобом для веревки. Колесо закреплено, оно может вращаться вокруг своей оси, но не может перемещаться. Концы веревки (троса) свисают вниз, к одному прикреплен груз, а к другом прикладывается сила. Если тянуть за трос вниз, то груз поднимается вверх.

Так как здесь нет выигрыша в силе, то нет и проигрыша в расстоянии. На какое расстояние поднимется груз, на такое же расстояние надо опустить веревку.

Использование подвижного блока дает выигрыш в силе в два раза (в идеале). Это значит, что если вес груза равен F, то чтобы его поднять, надо приложить силу F/2. Подвижный блок состоит всё из того же колеса с желобом для троса. Однако здесь закреплен один конец троса, а колесо подвижно. Колесо движется вместе с грузом.

Вес груза — это сила, направленная вниз. Его уравновешивают две силы, направленные вверх. Одну создает опора, к которой прикреплен трос, а другую тянущий за трос. Сила натяжения троса одинакова с обоих сторон, значит, между ними поровну распределяется вес груза. Поэтому каждая из сил в 2 раза меньше веса груза.

В реальных ситуациях выигрыш в силе меньше, чем в 2 раза, так как поднимающая сила частично «тратится» на вес веревки и блока, а также трение.

Подвижный блок, давая почти двойной выигрыш в силе, дает двойной проигрыш в расстоянии. Чтобы поднять груз на определенную высоту h, надо чтобы веревки с каждой стороны блока уменьшились на эту высоту, то есть в сумме получается 2h.

Обычно используют комбинации из неподвижных и подвижных блоков — полиспасты. Они позволяют получить выигрыш в силе и направлении. Чем больше в полиспасте подвижных блоков, тем больше будет выигрыш в силе.

Применение подвижного блока даёт двукратный выигрыш в силе, применение неподвижного — позволяет изменить направление прилагаемой силы. На практике используются комбинации подвижных и неподвижных блоков . При этом каждый подвижный блок позволяет вдвое уменьшить прилагаемое усилие или вдвое увеличить скорость перемещения груза. Неподвижные блоки используют для связи подвижных блоков в единую систему. Такая система подвижных и неподвижных блоков называется полиспаст.

Определение

Полиспаст — система подвижных и неподвижных блоков, соединенных гибкой связью (канаты, цепи) используемая для увеличения силы или скорости подъема грузов.

Используется полиспаст в случаях, если необходимо прилагая минимальные усилия поднять или переместить тяжелый груз, обеспечить натяжение и т.п. Простейший полиспаст состоит всего из одного блока и каната, при этом позволяет в два раза снизить тяговое усилие, необходимое для подъема груза.

Рисунок 1. Каждый подвижный блок в полиспасте даёт двукратный выигрыш в силе или скорости

Обычно в грузоподъемных механизмах применяют силовые полиспасты, позволяющие уменьшить натяжение каната, момент от веса груза на барабане и передаточное число механизма (тали, лебедки). Скоростные полиспасты, позволяющие получить выигрыш в скорости перемещения груза при малых скоростях приводного элемента, применяются значительно реже. Они используются в гидравлических или пневматических подъемниках, погрузчиках, механизмах выдвижения телескопических стрел кранов.

Основной характеристикой полиспаста является кратность. Это отношение числа ветвей гибкого органа, на котором подвешен груз, к числу ветвей наматываемых на барабан (для силовых полиспастов), либо отношение скорости ведущего конца гибкого органа к ведомому (для скоростных полиспастов). Условно говоря, кратность это теоретически рассчитанный коэффициент выигрыша в силе или скорости при использовании полиспаста. Изменение кратности полиспаста происходит путем введения или удаления из системы дополнительных блоков, при этом конец каната при четной кратности крепится на неподвижном элементе конструкции, а при нечетной кратности — на крюковой обойме.

Рисунок 2. Крепление каната при чётной и нечётной кратности полиспаста

Выигрыш в силе при применении полиспаста с $n$ подвижных и $n$ неподвижных блоков определяется по формуле: $P=2Fn$, где $Р$ — вес груза, $F$ — сила, прилагаемая на входе полиспаста, $n$ — число подвижных блоков.

В зависимости от количества ветвей каната, закрепленных на барабане грузоподъемного механизма, можно выделить одинарные (простые) и сдвоенные полиспасты. В одинарных полиспастах, при наматывании или сматывании гибкого элемента вследствие его перемещения вдоль оси барабана, создается нежелательное изменение нагрузки на опоры барабана. Также в случае отсутствия в системе свободных блоков (канат с блока крюковой подвески непосредственно переходит на барабан) происходит перемещение груза не только в вертикальной, но и в горизонтальной плоскости.

Рисунок 3. Одинарные и сдвоенные полиспасты

Для обеспечения строго вертикального подъема груза применяют сдвоенные полиспасты, (состоящие из двух одинарных), в этом случае на барабане закрепляются оба конца каната. Для обеспечения нормального положения крюковой подвески при неравномерной вытяжке гибкого элемента обоих полиспастов применяют балансир или уравнительные блоки.

Рисунок 4. Способы обеспечения вертикальности подъёма груза

Скоростные полиспасты отличаются от силовых тем, что в них рабочая сила, обычно развиваемая гидравлическим или пневматическим цилиндром, прикладывается к подвижной обойме, а груз подвешивается к свободному концу каната или цепи. Выигрыш в скорости при использовании такого полиспаста получается в результате увеличения высоты подъёма груза.

При использовании полиспастов следует учитывать, что используемые в системе элементы не являются абсолютно гибкими телами, а имеют определенную жесткость, поэтому набегающая ветвь не сразу ложится в ручей блока, а сбегающая ветвь не сразу выпрямляется. Это наиболее заметно при использовании стальных канатов.

Вопрос: почему у подъемных строительных кранов крюк, который переносит груз, закреплен не на конце троса, а на обойме подвижного блока?

Ответ: для обеспечения вертикальности подъёма груза.

На рис.5 изображён степенной полиспаст, в котором несколько подвижных блоков, а неподвижный — только один. Определите, какой вес можно поднять, приложив к неподвижному блоку усилие $F$ = 200 H?

Рисунок 5

Каждый из подвижных блоков степенного полиспаста удваивает прилагаемое усилие. Вес, который может поднять степенной полистпаст третьей степени (без учёта поправок на силы трения и жёсткость троса), определяется формулой:

Ответ: полиспаст может поднять груз весом 800 Н.

Блок — это разновидность рычага, представляет собой колесо с желобом (рис.1), через желоб можно пропустить веревку, трос, канат или цепь.

Рис.1. Общий вид блока

Блоки подразделяют на подвижные и неподвижные.

У неподвижного блока ось закреплена, при подъеме или опускании груза она не поднимается и не опускается. Вес груза, который поднимаем, обозначим P, прикладываемую силу обозначим F, точку опоры — O (рис.2).

Рис.2. Неподвижный блок

Плечом силы P будет отрезок OA (плечо силы l 1 ), плечом силы F отрезок OB (плечо силы l 2 ) (рис.3). Эти отрезки являются радиусами колеса, тогда плечи равны радиусу . Если плечи равны, то вес груза и сила, которую мы прикладываем для подъёма, численно равны .

Рис.3. Неподвижный блок

Такой блок не дает выигрыша в силе.Из этого можно сделать вывод, что неподвижный блок применять целесообразно для удобства подъема, проще поднимать груз вверх, применяя силу, которая направлена вниз.

Устройство, в котором ось может подниматься и опускаться вместе с грузом. Действие аналогично действию рычага (рис.4).

Рис. 4. Подвижный блок

Для работы этого блока один конец веревки закрепляется, ко второму концу приложим силу F, чтобы поднять груз весом P, груз прикреплен к точке A. Точкой опоры при вращении будет точка О, потому что в каждый момент движения блок поворачивается и точка O служит точкой опоры (рис.5).

Рис. 5. Подвижный блок

Значения плеча силы F составляет два радиуса .

Значение плеча силы P составляет один радиус.

Плечи сил отличаются в два раза, по правилу равновесия рычага, силы отличаются в два раза. Сила, которая необходима, чтобы поднять груз весом P, будет в два раза меньше, чем вес груза . Подвижный блок дает преимущество в силе в два раза.

На практике применяют комбинации блоков для изменения направления действия применяемой силы для подъема и ее уменьшения в два раза (рис.6).

Рис. 6. Комбинация подвижного и неподвижного блоков

На занятие мы познакомились с устройством неподвижного и подвижного блока, разобрали, что блоки — это разновидности рычагов. Для решения задач по этой теме необходимо помнить правило равновесия рычага: отношение сил обратно пропорционально отношению плеч этих сил.

  1. Лукашик В.И., Иванова Е.В. Сборник задач по физике для 7-9 классов общеобразовательных учреждений. — 17-е изд. — М.: Просвещение, 2004.
  2. Перышкин А.В. Физика. 7 кл. — 14-е изд., стереотип. — М.: Дрофа, 2010.
  3. Перышкин А.В. Сборник задач по физике, 7-9 кл.: 5-е изд., стереотип. — М: Издательство «Экзамен», 2010.
  1. Class-fizika.narod.ru ().
  2. School.xvatit.com ().
  3. Scienceland.info ().

Домашнее задание

  1. Узнайте самостоятельно, что собой представляет полиспаст и какой выигрыш в силе он дает.
  2. Где применяют в быту неподвижные и подвижные блоки?
  3. Как легче подниматься вверх: лезть по веревке или подниматься при помощи неподвижного блока?

Описание устройства

Блок — простой механизм, представляющий собой колесо с желобом по окружности для каната или цепи, способное свободно вращаться вокруг своей оси. Тем не менее, верёвка, переброшенная через древесную ветку тоже в какой-то степени является блоком.

Зачем же нужны блоки?

В зависимости от своей конструкции блоки могут позволить изменять направление приложенной силы (например, для того, чтобы поднять некий груз, подвешенный на верёвке, переброшенной через древесную ветку, необходимо тянуть другой конец верёвки вниз… или в сторону). При этом, данный блок не даст выигрыша в силе. Такие блоки называются неподвижными , так как ось вращения блока жёстко закреплена (конечно, если ветка не сломается). Такие блоки применяются для удобства. Например, при поднятии груза на высоту гораздо легче тянуть веревку с грузом перекинутую через блок

Система блоков полиспаст — схемы и конструкции

Полиспаст — это
грузоподъёмное устройство, состоящее из нескольких подвижных и неподвижных блоков огибаемых веревкой, канатом или тросом, позволяющее поднимать грузы с усилием в несколько раз меньшим, чем вес поднимаемого груза.

Блоки полипласты служат для изменения направления движения троса. Их размеры зависят от диаметра троса.

Блоки, огибаемые тросом 6X37, должны иметь диаметр, равный 16 диаметрам троса, а блоки, огибаемые тросом 6X61, — не менее 21 диаметра троса.

При забивке свай применяют главным образом:

  1. одношкивные и
  2. двухшкивные блоки.
  3. Бывают еще и многошкивные.

Каждый блок рассчитан на подъем груза определенного веса.

Полиспасты (тали) применяются в тех случаях, когда вес поднимаемой или подтягиваемой сваи или другого груза превышает грузоподъемность лебедки.

Полиспаст состоит из неподвижного и сдвижного блоков, через которые запасован трос, огибающий шкивы блоков.

На рис. 1 изображен подвижный двухшкивный блок, которому прикреплен крюк (гак), используемый для подвешивания груза.

Неподвижный блок крепится к верху — копра, к стреле крана или другой опоре.

Рис. 1. Конструкция двухшкивного блока

Для определения, во сколько раз можно получить выигрыш в силе от применения полиспаста (талей), надо подсчитать, на скольких тросах висит подвижный блок.

Грузоподъемность талей будет примерно равна грузоподъемности лебедки, умноженной на это число.

Например, имеются тали, состоящие из двух двухшкивных блоков, нижний (подвижный) блок висит на четырех тросах, грузоподъемность лебедки 3 т. Этой лебедкой с помощью указанных талей можно поднять груз 4X3=12 т

Необходимо следить за тем, чтобы блоки всегда были смазаны и шкивы легко вращались на осях, иначе значительные силы будут затрачиваться на преодоление трения и выигрыш в силе от применения полиспаста значительно сократится.

В зависимости от количества ветвей каната, закрепленных на барабане грузоподъемного механизма, можно выделить одинарные (простые) и сдвоенные полиспасты.

В одинарных полиспастах, при наматывании или сматывании гибкого элемента вследствие его перемещения вдоль оси барабана, создается нежелательное изменение нагрузки на опоры барабана.

Также в случае отсутствия в системе свободных блоков (канат с блока крюковой подвески непосредственно переходит на барабан) происходит перемещение груза не только в вертикальной, но и в горизонтальной плоскости.

 

Для обеспечения строго вертикального подъема груза применяют сдвоенные полиспасты, (состоящие из двух одинарных), в этом случае на барабане закрепляются оба конца каната. Для обеспечения нормального положения крюковой подвески при неравномерной вытяжке гибкого элемента обоих полиспастов применяют балансир или уравнительные блоки.

Такие полиспасты применяют в основном в мостовых и козловых кранах, также в тяжелых башенных кранах для того, чтобы можно было использовать две стандартные грузовые лебедки вместо одной крупногабаритной большой мощности, а также для получения двух или трех скоростей подъема груза.

Блоки, кроме полиспастов, применяют для изменения направления канатов (отводные блоки).
Для монтажа металлических конструкций изготовляют блоки, отличающиеся числом роликов и грузоподъемностью от 1 до 50 т

табл. 1 помещены размеры блоков Прометальмонтажа Ролики в этих блоках чугунные или стальные, оси из Ст. 5, втулки бронзовые, система смазки закладная.

Рис. 1. Блоки а — однорольныи; б — двухрольный

Блоки (Промстальмонтаж)

Число роликов Грузоподъемность
в т
диаметр
ролика в мм
диаметр
троса в мм
Размеры в мм Вес в кг

А

Б

В

Г

Е

1

1

8,7

150

165 240 132 80 505 10,5

5

19,5

300

290 420 245 130 690 46

10

24

400

380 560 320 165 1170 93,6

2

10

19,5

300

320 440 250 210 1040 88

15

24

400

415 560 310 235 1300 175

20

24

400

430 560 320 245 1380 203

3

20

24

400

530 560 320 330 1580 200

25

24

400

530 560 320 330 1550 242

Простейшие механизмы для подъема грузов

Гордень — одношкивный блок с пропущенным через него тросом; для выигрыша в силе в такелажном деле используют хват-тали и гини (рис. 137).


Рис. 137. Простейшие механизмы для подъема груза:
а — гордень, б — хват-тали, в — гини

Тали — это полиспаст, т. е. система одношкивных блоков (двух и более) с одним тросом, предназначенных для совместной работы. Чаще всего применяют тали в виде двух блоков с одним-тремя шкивами в каждом. Наиболее широко используются хват-тали, имеющие один блок подвижной, а другой (верхний) блок в виде двойных талей.

Гинями называют тали, имеющие два блока с тремя и более шкивами в каждом. Многошкивные блоки (более трех) применяют редко, они имеют особую конструкцию и применяются лишь в специальных устройствах. Гини — самые большие тали, служащие для подъема больших тяжестей; они отличаются от обычных талей большими размерами блоков и толщиной каната-лопыря.

Трос, соединяющий два блока для совместной работы, называют лопарем талей. Конец, с помощью которого лопарь заделывают наглухо в обух верхнего или нижнего блока, называют коренным лопарем, а конец, выходящий из верхнего блока, за который тянут при подъеме груза или травят при его опускании, называют ходовым лопарем; остальные ветви троса талей называют ветвями лопаря, число которых равно числу шкивов обоих блоков.

Тали бывают с двумя одношкивными блоками, с одним одношкивным и одним двушкивным; с двумя двушкивными блоками, с одним двушкивным и одним трехшкивным и, наконец, с двумя трехшкивными блоками (гини). Следовательно, ветвей лопаря может быть от трех до семи.

Для талей применяют растительные канаты и стальные тросы, а также такелажные цепи.

Механические тали — тали, которые называют дифференциальными. Существуют также системы дифференциальных талей с винтовой передачей и тали с зубчатой передачей.

Для подъема грузов на небольшую высоту применяют ручные тали; по грузоподъемности тали выпускаются 1—10 т, их изготовляют зубчатыми с шестеренчатым и червячным приводами.

Ручные тали с червячным приводом состоят из крюка, на котором их подвешивают к конструкциям, верхнего стального неподвижного блока, на ободе которого нарезаны зубья для сцепления с элементами цепной передачи; этот приводной блок связан с червяком. Сварная калиброванная цепь, выполненная замкнутой бесконечной, перекинута через приводной блок, вращающийся от перебирания цепи руками. Во время вращения приводного блока с червяком вращается и червячная шестерня, соединенная со звездочкой. Если вручную перебирать цепь вращения приводного блока, червяк будет вращаться и передавать вращение верхнему блоку вместе с грузовой цепью, расположенной на гнездах звездочки. Через нижний блок (малого диаметра) талей и верхнюю звездочку проходит грузовая цепь. При вращении червячной шестерни со звездочкой грузовая цепь сокращается по длине и поднимает груз. Для подъема груза ручными талями необходимо приложить к цепи тяговое усилие в 33—68 кгс (в зависимости от поднимаемого груза).

Подъем груза с помощью механических талей с шестеренчатым приводом происходит так же, как и подъем груза талями с червячным приводом. Однако в первом случае подъем груза осуществляется в параллельной плоскости, в которой вращается приводной блок, а при червячной передаче во взаимно перпендикулярных плоскостях. Для уменьшения усилий подъема делают две шестеренчатые передачи (рис. 138).


Рис. 138. Дифференциальные (механические) тали

Ручные механические тали имеют ограниченный радиус действия, они могут поднимать груз только в месте закрепления.

Для расширения радиуса действия талей, их подвешивают к тележке, которая передвигается по путям, выполненным из двутавровых балок, подвешенных к перекрытиям цеха.

Более совершенным грузоподъемным приспособлением является тельфер — электрическая таль с тележкой, передвигающейся по монорельсу. Подъемным механизмом у тельфера служит электромотор, соединенный с барабаном, заменяющим верхний блок талей. Подъемом и перемещением тельфера управляют через пульт с кнопками на гибком проводе. Тельферы могут перемещаться и на значительные расстояния с помощью троллея — токонесущего провода, расположенного сбоку монорельсов или над ними.

В судостроении и судоремонте используют также шпили и лебедки. Они бывают ручные и электрические.

Ручная лебедка имеет прочное и массивное основание, станину, основной барабан (с горизонтальной осью), валы с шестернями для изменения скоростей, тормоз и рукоятки для приложения мускульной силы. Ручные лебедки изготовляют грузоподъемностью 0,5; 1,0; 3,0; 5 т. При работе с такими лебедками применяют канифос-блоки и тали. Канифос-блоки служат для отвода троса, идущего на барабан, а тали — для получения большего выигрыша в силе.

Шпиль, в отличие от лебедки, имеет вертикальную ось вращения. Шпили и лебедки работают обычно на малой скорости с большими тяговыми усилиями. При подъеме легких грузов пользуются одной ветвью троса (шкентелем), а при подъеме тяжелых грузов применяют тали.

Электрические шпили (рис. 139) и лебедки работают на берегу от электростанции или подстанции завода, а на судне — от генератора. Вал с барабаном на них приводится во вращение электродвигателем. Для управления ими применяют контроллеры и пусковые реостаты. Поворачивая рычаг пускового реостата в ту или другую сторону, механизмам сообщают нужный ход.


Рис. 139. Шпили и лебедки:
а — схема работы шпиля, б — схема работы лебедки, в — ручная такелажная лебедка; 1 — барабан, 2 — рукоятка, 3 — переставной вал рукоятки, 4, 5 — цилиндрическая зубчатая передача, ведущее колесо которой может быть включено и разобщено, 6, 7 — барабанная передача, 8 — запорный механизм для остановки вала, 9 — храповой тормоз, 10 — щиты из листовой стали, 11 — распорные болты

Перед подъемом грузов необходимо проверить правильность вращения лебедки (или шпиля), определить пригодность ее для данной работы. Особое внимание следует обратить на исправность стопора. При неисправности стопора и тормоза лебедка работать не может.

Для подъема тяжелых машин и агрегатов на небольшую высоту и передвижения их на незначительные расстояния, а также выполнения различных такелажных работ применяют домкраты. Их преимущества: малая масса, большая грузоподъемность, простота конструкции, легкость устройства торможения и удобство обращения.

Домкраты бывают: винтовые, гидравлические, воздушные и с зубчатой рейкой; их общим недостатком является сравнительно низкий к. п. д. Грузоподъемность домкратов достигает 20—25 т. Средняя высота подъема грузов 400 мм, масса реечных и винтовых домкратов колеблется в пределах от 5 до 120 кг.

В эксплуатации механизмов широко применяют канатно-веревочные изделия и такелажные цепи.

Как упростить ручной подъем за счет установки системы шкивов блока и захвата

Система шкивов блока и захвата — это система канатов и шкивов, которая позволяет распределять силу на расстояние и может использоваться в повседневных, распространенных применениях например, такелаж на парусной лодке, флагштоки, жалюзи на окнах, подъемники для двигателей или даже большие строительные краны. Проще говоря, блок и снасть — это комбинация веревки и двух или более шкивов, которая снижает силу, необходимую для подъема груза.Повышенное механическое преимущество (IMA) системы блокировки и захвата облегчает подъем, а IMA блока и захвата определяется количеством раз, когда канат проходит через шкивы. Один шкив равен одному преимуществу, два шкива равны двум преимуществам и т. Д. Чтобы поднять 100 фунтов, система с одним шкивом равнялась бы 100 фунтам. требуемой подъемной силы. Однако два шкива означают всего 50 фунтов. подъемной силы требуется, чтобы поднять те же 100 фунтов, в то время как для системы с тремя шкивами потребуется всего 33 фунта.подъемника на тросе.

Признанный историей как одна из величайших «шести простых машин», когда-либо созданных, первое задокументированное использование шкива было зарегистрировано греческим ученым Архимедом около 250 г. до н.э. Считается, что он почти наверняка использовался при создании знаменитого Стоунхенджа в Соединенном Королевстве.

Помимо истории, существует шесть аспектов, которые следует учитывать при настройке системы шкивов с блокировкой и захватом: функция, подъем с помощью шкива, подъем с помощью блока и захвата, механическое преимущество, сила и работа и трение.

Функция

Система блокировки и захвата чаще всего используется там, где тяжелая машина недоступна для подъема тяжелых грузов. По этой причине требуется искусственная подъемная сила, и именно здесь вы можете увидеть систему, используемую, например, на лодке с парусами (поскольку тяжелый кран было бы крайне непрактично использовать).

Подъем с помощью шкива

Стандартный шкив — это просто одно колесо на оси, через которое проходит трос.Для базового подъема на 100 фунтов одиночный неподвижный шкив может быть прикреплен к стропилам здания, через него проходит веревка, а затем один конец веревки прикреплен непосредственно к 100-фунтовой нагрузке. Другой конец веревки предназначен для того, чтобы вручную тянуть груз для его перемещения. В этом случае каждый раз, когда веревка натягивается на одну ногу со 100 фунтами. силы, груз будет поднят на одну ногу. Во всяком случае, менее 100 фунтов. подъемной силы груз не перемещается.

Подъем с блоком и приспособлением

При такой установке второй шкив может быть прикреплен к грузу вместо того, чтобы прикреплять веревку непосредственно к грузу.Затем, пропуская веревку через неподвижный шкив, прикрепленный к стропилам, создается система блокировки и подъема. Теперь веревка дважды проходит между стропилами и грузом каждый раз, когда натягивается свободный конец веревки. Чтобы поднять груз на один фут в воздух, нужно было натянуть веревку на два фута. Однако только 50 фунтов. подъемной силы потребуется, чтобы поднять груз весом 100 фунтов.

Механическое преимущество

Это несоответствие между силой, необходимой для перемещения объекта, и весом объекта является механическим преимуществом (или увеличенным механическим преимуществом = IMA) блока и снасти.Чтобы рассчитать IMA, либо разделите вес поднимаемого объекта на силу, необходимую для его подъема, либо разделите количество веревки, которую необходимо натянуть. Чтобы определить механическое преимущество машины с помощью первого метода, вы разделите вес груза на 200 фунтов. например, силой, необходимой для его подъема, 100 фунтов, что дает вам IMA равное двум. Разделив, сколько веревки тянут за один раз (два фута), на расстояние, на которое поднимается ящик (один фут), мы получим тот же ответ — IMA из двух.Обычно количество отрезков каната между двумя шкивами в блоке и снасти соответствует IMA системы или машины. В приведенном выше примере блока и снасти два отрезка каната, проходящие через два шкива, дают значение IMA, равное двум.

Сила и работа

Здесь проверяется соотношение выполненной работы (натяжение каната) по отношению к создаваемой силе и создаваемой подъемной силе. Хотя блок и захват могут уменьшить силу, необходимую для перемещения груза, они не меняют объем работы.Блок и снасть с IMA 4 позволяют поднять груз весом 4 фунта с одним фунтом силы. Однако для подъема груза на один фут требуется натяжение веревки на 4 фута.

Трение

Наконец, последний аспект, который следует учитывать, — это трение. Каждый раз, когда объект движется относительно другого, часть энергии этого движущегося объекта теряется на трение. В случае блока и захвата с движущимся канатом и шкивами трение снижает IMA машины.Разделив вес поднимаемого объекта на вес, необходимый для его подъема, вы сможете оценить влияние трения на IMA блока и захвата.

С момента своего изобретения в древности система блокирующего шкива и подъемного механизма превратилась в одну из величайших простых машин всех времен. Если вам нужно поднимать или перемещать тяжелые предметы с меньшими усилиями, установка блокирующей системы и системы подъемных шкивов по-прежнему является правильным решением.

В

Zoro есть все необходимое для создания эффективных блочных и подъемных машин с использованием наших комплектующих для подъемных кранов, включая шкивы и шкивы для использования с тросом, волокнистым тросом и т. Д.

Чтобы защитить себя при перетягивании грузов вручную, обязательно ознакомьтесь с нашим широким выбором кожаных перчаток для ладони, чтобы обеспечить улучшенный захват и более безопасное упражнение с поднятием тяжестей.

Как использовать систему с одним и двумя шкивами

Когда вам нужно поднять тяжелый груз, шкив может облегчить работу. Шкив — это одна из шести физических немоторизованных простых машин — в данном случае та, которая уменьшает либо усилие, необходимое для подъема груза, либо направление, в котором сила должна быть приложена, чтобы переместить груз, — либо он может делайте обе вещи: уменьшайте необходимую силу, а также направление.

Шкивы работают с помощью рифленого колеса, которое вращается вокруг оси. Когда шкив закреплен на прочном якоре и веревка продета через канавки на колесе шкива, его можно использовать для подъема тяжелых грузов намного легче, чем это делать грубой силой. И вы можете удвоить эффективность системы шкивов, увеличив количество шкивов в установке. Есть несколько способов комбинировать несколько шкивов в подъемной установке. Любое подъемное устройство, в котором используется только один шкив, известно как простая система шкивов или с одним шкивом , тогда как любая система, объединяющая два или более шкива, известна как составной шкив .

Простая система шкивов с использованием одного колеса не уменьшает количество силы, но меняет направление, необходимое для перемещения груза. С другой стороны, составная система фактически снижает силу, необходимую для перемещения объекта. Составные системы могут быть сложными. Например, вы можете смонтировать систему, используя две ступицы шкивов, каждая из которых имеет два колеса, и при протягивании подъемных тросов через все четыре колеса и две ступицы подъемная сила может быть очень значительной.Самая известная форма составного шкива — это хорошо известный блокирующий механизм, но системы шкивов могут быть очень сложными в сложных механизмах, использующих несколько ступиц, каждая с двумя или более колесами. Например, парусная оснастка на больших парусных лодках может иметь очень сложные системы шкивов.

В этой статье, однако, описывается, как оснастить довольно простую систему шкивов для обычного домашнего использования, чтобы было легче поднимать тяжелые веса.

••• Wikicommons

Однако важно знать, что шкив ничего не делает для уменьшения общего веса поднимаемого объекта, и что любая точка, которую вы выбираете для закрепления фиксированного шкива, должна соответствовать задаче поддерживая весь вес груза.Например, если вы поднимаете в воздух ездовую газонокосилку для работы с ходовой частью или поднимаете мотоцикл для работы с шинами, шкив необходимо закрепить таким образом, чтобы он мог безопасно выдержать весь вес. Несоблюдение этого правила может привести к серьезной аварии.

Как использовать простую систему шкивов

Простая система шкивов ничего не делает для уменьшения силы, необходимой для подъема объекта, но она позволяет приложить силу в другом направлении.Если, например, вы хотите поднять 100-фунтовый груз, для простой системы шкивов все равно потребуется 100 фунтов силы, но вы сможете применить его в более удобном направлении вниз или в сторону, а не поднимать прямо вверх. .

    Определите вес груза, который необходимо поднять. Установите точку крепления над головой как можно ближе к тому, чтобы она находилась прямо над грузом, который вы хотите поднять. Если весовая нагрузка может перемещаться в боковом направлении, это может означать перекатывание или скольжение в точку, находящуюся непосредственно под подходящей точкой крепления.Помните, однако, что точка, к которой ваша система шкивов закреплена наверху, должна соответствовать задаче поддержки нагрузки.

    Обратитесь к информации производителя о шкивах, чтобы определить, какой вес могут поднять шкивы. Используйте один шкив, если его вес достаточен для подъема вашего груза. Если шкива недостаточно, перейдите ко второму набору инструкций по использованию составного шкива.

    Закрепите фиксированный шкив на анкерной точке. Например, в гараже это может означать прикрепление неподвижного шкива к цепи, обернутой вокруг прочной потолочной балки.Не ожидайте, что винт с проушиной, вставленный в балку потолка, выдержит очень тяжелые веса, так как он может вырваться, если вес будет значительным. Всегда лучше наматывать якорную цепь или трос вокруг верхнего элемента каркаса. Прочная ветка дерева также может служить хорошей опорой для фиксированного шкива.

    Выберите подъемный канат, который рассчитан на вес, который вы хотите поднять, и с диаметром, который точно соответствует канавкам на вашем шкивном колесе. Проденьте один конец веревки через ступицу верхнего шкива, чтобы он вошел в паз колеса, затем прикрепите конец веревки к объекту, который вы хотите поднять.

    Продолжайте поднимать груз, прикладывая нисходящую или боковую силу к другому концу веревки. Если вы планируете удерживать груз в фиксированном положении, выберите точку крепления для другого конца веревки, достаточную для надежного удержания груза на месте.

Как использовать базовую систему составных шкивов

В этой простейшей форме составной системы шкивов вам понадобится один фиксированный шкив, который будет закреплен наверху, и другой шкив, который будет прикреплен непосредственно к грузу и двигайтесь при подъеме груза.Преимущество составной системы в том, что она действительно снижает усилие, необходимое для подъема. Если вес слишком тяжел для подъема вручную, сложная установка шкива позволит вам выполнить эту работу.

    Прикрепите фиксированный шкив к верхней точке анкерного крепления, как описано в шагах с 1 по 3 выше. Затем прикрепите подвижный нижний шкив непосредственно к грузу. Убедитесь, что обе точки крепления достаточно прочны, чтобы выдержать нагрузку, которая будет на них возложена. Когда системы шкивов выходят из строя, они почти всегда находятся в одной из этих двух точек крепления.

    ••• Велкинридж, Wikicommons

    Сначала прикрепите веревку к нижней части верхнего фиксированного шкива, затем пропустите веревку через колесо на подвижном нижнем шкиве. Теперь снова пропустите веревку через верхний фиксированный шкив. Убедитесь, что трос полностью вошел в пазы на колесах шкива.

    Поднимите груз, надавив на веревку вниз или в боковом направлении. При подвешивании груза закрепите свободный конец веревки в точке крепления, способной удерживать груз.

Как работает блок и снасти

Если вы когда-либо смотрели на конец крана, или если вы когда-либо использовали подъемник с двигателем или подъемник, или если вы когда-либо смотрели на такелаж на парусной лодке , значит, вы увидели блокировку и подкат в действии. Блок и снасть — это набор канатов и шкивов, позволяющий менять силу на расстояние. В этом выпуске How Stuff Works мы рассмотрим, как работает блок и захват, а также рассмотрим несколько других устройств, увеличивающих силу!

Понимание блока и захвата

Представьте, что у вас есть 100-фунтовая (45.4 килограмма) груз, подвешенный на веревке, как показано здесь.

На этом рисунке, если вы собираетесь подвесить груз в воздухе, вам нужно приложить к веревке силу в 100 фунтов, направленную вверх. Если длина веревки составляет 100 футов (30,5 метра), и вы хотите поднять вес на 100 футов, вам нужно натянуть веревку длиной 100 футов, чтобы сделать это. Это просто и очевидно.

А теперь представьте, что вы добавляете в смесь шкив.

Это что-нибудь меняет? Не совсем. Единственное, что меняется, — это направление силы, которую вы должны приложить, чтобы поднять вес.Вам все равно придется приложить 100 фунтов силы, чтобы удержать вес в подвешенном состоянии, и вам все равно придется наматывать 100 футов веревки, чтобы поднять вес на 100 футов.

На следующем рисунке показано расположение после добавления второго шкива:

Это расположение действительно меняет важные вещи. Вы можете видеть, что теперь вес подвешен на двух шкивах, а не на одном. Это означает, что вес распределяется поровну между двумя шкивами, поэтому каждый из них выдерживает только половину веса, или 50 фунтов (22.7 килограмм). Это означает, что если вы хотите удерживать вес в подвешенном состоянии, вам нужно приложить только 50 фунтов силы (потолок прилагает другие 50 фунтов силы к другому концу веревки). Если вы хотите поднять груз на 100 футов выше, вам нужно наматывать вдвое больше веревки. Необходимо натянуть веревку от 0 до 200 футов. Это демонстрирует компромисс между силой и расстоянием. Усилие уменьшилось вдвое, но расстояние, на которое нужно тянуть веревку, увеличилось вдвое.

На следующей схеме к устройству добавляются третий и четвертый шкивы:

На этой схеме шкив, прикрепленный к грузу, фактически состоит из двух отдельных шкивов на одном валу, как показано справа.Такое расположение вдвое снижает силу и снова удваивает расстояние. Чтобы удерживать вес в воздухе, вы должны приложить только 25 фунтов силы, но чтобы поднять вес на 100 футов выше в воздухе, вы должны теперь намотать 400 футов веревки.

Блок и захват могут содержать сколько угодно шкивов, хотя в какой-то момент трение в валах шкивов начинает становиться значительным источником сопротивления.

Шкивы для подъема человека или тяжелого груза

1. Попробуйте поднять товарищеский / бетонный груз с помощью одного фиксированного шкива:
Прикрепите один шкив к опорной балке с помощью короткого троса.Пропустите длинный трос через этот шкив и привяжите его к седлу / бетонному блоку.
Потяните за свободный конец веревки, чтобы попытаться поднять человека / груз. Скорее всего, это будет сложно, а некоторым студентам это будет невозможно.
Шкив позволял тянуть в одном направлении и перемещать друга в противоположном — он просто менял направление силы.

2. Попробуйте поднять человека с помощью четырех шкивов:
Привяжите два шкива к опорной балке двумя короткими отрезками веревки.Добавьте петлю веревки к сиденью или грузу и через проушины двух шкивов, завязывая веревку между шкивами, чтобы они были разнесены друг от друга (см. Фотографии).
Пропустите длинный трос через один из верхних шкивов, затем через нижний шкив, затем через второй верхний шкив, затем через второй нижний шкив, затем, наконец, привяжите трос к опорной балке. Потяните всю систему вниз, чтобы достичь земли, затем привяжите другой конец длинной веревки к сиденью или бетонным блокам.
Потяните за свободный конец веревки, чтобы поднять человека / груз вверх. Убедитесь, что ученики тянут за руки, чтобы веревка никогда не выскочила (действуйте как тормоз веревки, действуйте там, где они ее держат). Не позволяйте им тянуть человека или груз слишком высоко.
Смысл в том, чтобы они почувствовали разницу сил между установленным шкивом и одним шкивом. С композитной системой шкивов будет намного легче подтянуться. Это потому, что теперь есть четыре веревки, тянущие человека / груз (считайте их вместе со студентами), и они разделяют силу.Вам нужно всего лишь натянуть свободный трос с усилием, равным 1/4 от силы одношкивной системы. НО вам нужно протянуть веревку через шкивы в четыре раза больше длины, чтобы поднять нагрузку на ту же величину. Общий объем работы одинаков для каждой системы шкивов: это произведение силы на расстояние, на которое действует сила.

Посмотрите фотографии кранов, у которых есть несколько тросов, выходящих из груза, что позволяет машинному оборудованию поднимать больший груз с той же силой от двигателя.(Однако потребуется протянуть больше кабелей.)

Ослабьте нагрузку с помощью шкива

Основные концепции
Физика
Простые станки
Сил
Энергия
Трение

Введение
До наступления индустриальной эпохи людям приходилось в основном полагаться на силу мышц, чтобы перемещать и поднимать тяжелые предметы. Простые механизмы, такие как шкивы, рычаги и аппарели, облегчили людям подъем тяжелых предметов, таких как камни и бревна.В этом проекте вы будете использовать простые хозяйственные материалы, чтобы изучить одну из этих классических машин: шкив.

Фон
Шкивы — это простые механизмы, которые могут облегчить подъем предметов. Они сделаны из другого типа простой машины — колеса и оси. К простому шкиву добавлена ​​еще одна деталь — веревка, намотанная на колесо. Один конец веревки можно привязать к грузу, например, к ведру с водой на дне колодца. Вы можете потянуть за другой конец веревки, и натяжение веревки поднимет груз.Преимущество простого шкива в том, что он позволяет изменять направление силы, необходимой для его подъема. Например, чтобы поднять ведро из колодца, можно потянуть за веревку.

Что делать, если вы хотите изменить силу, необходимую для подъема груза? В случае простого шкива усилие, которое вы должны приложить, равно весу груза. С помощью составного шкива — двух или более шкивов, объединенных вместе — вы можете уменьшить усилие, необходимое для подъема груза. Это сокращение не происходит бесплатно — из-за сохранения энергии оно увеличивает расстояние, на которое вы должны приложить силу.(Энергия равна силе, умноженной на расстояние.) Например, чтобы уменьшить силу, вы должны приложить половину веса груза, а затем, чтобы поднять груз на один метр, вам нужно будет потянуть веревку на два метра.

Есть еще один фактор, который необходимо учитывать при использовании шкива — трение. «Идеальный» шкив — такой, который вы видите в учебнике физики или в домашних заданиях — не учитывает этого. В реальных шкивах всегда будет некоторое трение, и вам нужно приложить немного дополнительной силы, чтобы его преодолеть.В этом проекте вы исследуете простые и составные шкивы и то, как они изменяют силу, необходимую для подъема груза.

Материалы

  • Две пустые коробки из-под хлопьев
  • Два карандаша
  • Четыре скрепки
  • Не менее 10 металлических шайб или шестигранных гаек одного размера
  • Строка
  • Ножницы
  • Линейка (опция)
  • Пустая катушка с нитью (опция)

Препарат

  • Поставьте две коробки с хлопьями параллельно друг другу на столе.
  • Осторожно проделайте два отверстия друг напротив друга по направлению к верху коробок для хлопьев (на их внутренней стороне), чтобы вы могли протолкнуть карандаш через отверстия так, чтобы он поддерживался коробками. (При необходимости обратитесь за помощью к взрослым с этой деталью.)
  • Отрежьте кусок бечевки, длина которого немного превышает высоту одной коробки с хлопьями.
  • Привяжите канцелярские скрепки к каждому концу веревки.

Порядок действий

  • Повесьте веревку на карандаш так, чтобы по одной канцелярской скрепке свисали с каждой стороны.Это ваш простой шкив.
  • Повесьте две шайбы на одну из скрепок. (Слегка согните скрепку, чтобы ее можно было легко использовать как крючок.) Эти шайбы — ваш «груз». Пусть они упадут на стол.
  • По очереди начните вешать шайбы на другую скрепку. Осторожно наденьте шайбы на скрепку, не роняйте их. Эти шайбы — ваша сила «усилия». Сколько шайб нужно повесить на скрепку, пока груз не начнет подниматься со стола?
  • Затем вы создадите составной шкив.
  • Проделайте еще два отверстия (по одному в каждой коробке), чтобы можно было вставить второй карандаш параллельно первому; они должны находиться на расстоянии нескольких сантиметров друг от друга.
  • Отрежьте новую веревку примерно вдвое длиннее одной коробки.
  • Привяжите один конец веревки ко второму карандашу, а другой конец накиньте на первый карандаш.
  • Повесьте канцелярскую скрепку на веревке между двумя карандашами так, чтобы она свисала между ними. Повесьте на эту скрепку две шайбы и дайте им упасть на землю.Это будет ваша нагрузка.
  • Привяжите свободный конец веревки к другой канцелярской скрепке. Скрепка должна быть приподнята над землей, рядом с карандашами. В противном случае вам может потребоваться укоротить строку.
  • По очереди начните навешивать шайбы на вторую скрепку. Сколько шайб нужно повесить на скрепку, пока груз не начнет подниматься со стола?
  • Сравните результаты для двух разных типов шкивов. Должно быть достаточно места для одновременной установки обоих типов шкивов.Если у вас достаточно шайб, вы можете проводить тесты рядом. Требуется ли больше или меньше шайб для подъема одного и того же груза с использованием составного шкива по сравнению с простым шкивом? Почему?
  • Дополнительно: В этих шкивах много трения, потому что струна трется непосредственно о карандаш. (Не существует настоящего «колеса», которое могло бы вращаться.) Можете ли вы уменьшить трение в шкиве? Например, попробуйте использовать в качестве колеса пустую катушку с нитками. Как это повлияет на ваши результаты?
  • Дополнительно: С помощью линейки измерьте расстояние, пройденное грузом, и усилие для каждого типа шкива. Насколько далеко нужно переместить усилие, чтобы поднять груз на 10 сантиметров простым шкивом? А как насчет составного?

Наблюдения и результаты
Вы обнаружите, что для подъема эквивалентной нагрузки с составным шкивом требуется меньше шайб по сравнению с простым шкивом. Например, в идеале с помощью простого шкива вы могли бы поднять две шайбы с помощью двух других шайб. (Сила усилия будет равна силе нагрузки.На самом деле между тетивой и карандашом есть некоторое трение, которое вы должны преодолеть, поэтому может потребоваться три или четыре шайбы. (Сила усилия больше, чем сила нагрузки.) С составным шкивом в идеале вы могли бы поднять две шайбы, используя только одну шайбу. Опять же, необходимо преодолеть некоторое трение, поэтому может потребоваться две или три шайбы. Но помните, что это уменьшение требуемой силы не «бесплатное» — вам нужно переместить усилие вдвое дальше. В этом можно убедиться, если измерить расстояния линейкой.

Больше, чтобы изучить шкивы
, от ExplainThatStuff!
Поднимите себя: облегчение нагрузки с помощью шкивов, от Science Buddies
Тяжелое поднятие тяжестей с помощью рычага, от Scientific American
Научные занятия для всех возрастов !, от Science Buddies

Это мероприятие предоставлено вам в сотрудничестве с Science Buddies

Как работают шкивы? — Объясните, что Stuff

Как работают шкивы? — Объясни это Реклама

Криса Вудфорда.Последнее изменение: 14 сентября 2020 г.

Вы, наверное, видели этих потрясающих телесериалов, которые могут тянуть машины. своими волосами и волочить поезда зубами. Но знаете ли вы наука тоже может сделать тебя сильным? Если вам нужно поднимать большие веса, не напрягайте спину: используйте силу науки — и удивительный Устройство под названием шкив . Давайте подробнее рассмотрим, как они работают!

Фото: шкив, установленный на огромной подъемной раме для большей безопасности. Благодаря мощности шкивов один человек может поднять гораздо больше, чем его собственный вес, не напрягая никаких мышц, потому что несколько веревок или цепей выдерживают дополнительный вес.Фото Р. Б. Хотарда любезно предоставлено Корпусом морской пехоты США.

Что такое шкивы?

Шкив — это просто набор из одного или нескольких колес, на которые вы натягиваете веревку, чтобы облегчить подъем предметов.

Шкивы — это примеры того, что ученые называют простыми механизмами. Это не значит, что они забиты двигателями и шестерни; это просто означает, что они помогают нам умножать силы. Если вы хотите поднять действительно тяжелый веса, ваши мышцы могут дать только такую ​​силу, даже если ты самый сильный человек в мире.Но используйте простую машину, такую ​​как шкив, и вы сможете эффективно увеличить силу, производимую вашим телом.

Давайте проясним массу и вес!

Прежде чем мы продолжим, давайте очень четко определим разницу между весом и массой. Это поможет в тот момент, когда мы говорим об использовании шкивов для подъема грузов (которые на самом деле составляют масс ) с определенной величиной силы . В двух словах:

  • Масса — это количество материала, из которого что-то сделано или содержится, измеренное в килограммах (или фунтах).
  • Вес — это величина силы , с которой гравитация Земли воздействует на определенную массу: Чем массивнее что-то, тем больше гравитационная сила и тем больше, как мы говорим, оно весит.

Фото: Сколько силы в ньютоне? Этот апельсин имеет массу около 100 г (0,1 кг), поэтому мне нужно приложить 1 Н (один ньютон) силы, чтобы удерживать его в воздухе. Грубо говоря, мы говорим, что апельсин «весит» 100 г; Собственно говоря, он весит 1Н.

Если вы человек с массой 80 кг, гравитация Земли тянет вас с силой 800 ньютонов. (на Земле ваш вес в ньютонах всегда примерно в 10 раз больше вашей массы в килограммах, потому что Земля притягивает каждый килограмм массы с силой 10 ньютонов).Строго говоря, мы должны взвешивать вещи в единицах силы (ньютонах), поэтому, если ваша масса 80 кг, ваш вес действительно 800 ньютонов. Но в повседневной речи мы склонны путать массу и вес и вместо этого говорить о весе в килограммах (или фунтах). Точно так же, хотя килограмм — это единица массы, а не силы, можно говорить о силе, эквивалентной данной массе, потому что все массы обычно таким же образом преобразуются в силы. Подробнее об этом читайте в нашей статье о гири и противовесы.

Как работают шкивы

Чем больше у вас колес и чем чаще вы обматываете их веревкой, тем больше вы можете поднять.

Одно колесо

Если у вас есть одно колесо и веревка, шкив помогает изменить направление подъемной силы. Таким образом на картинке ниже вы тянете веревку вниз, чтобы поднять взвесить. Если вы хотите поднять что-то весом 100 кг, у вас есть тянуть вниз с силой, эквивалентной 100 кг, что составляет 1000 Н (ньютонов). Если вы хотите поднять груз на 1 м в воздух, вы должны вытащить свободный конец веревки в сумме расстояние 1 м на другом конце.


Рисунок: Как работают шкивы №1: С одним колесом шкив просто меняет направление силы, которую вы прикладываете. Никаким другим образом это не изменяет силу.

Два колеса

Теперь, если вы добавите еще колеса и обвяжите их веревкой, вы можете уменьшить усилия, необходимые для подъема веса. Предположим, у вас есть два колеса и обвитая вокруг них веревка, как показано на рисунке ниже. Масса 100 кг (вес 1000 ньютон) теперь эффективно поддерживается двумя секциями одной и той же веревки. (две нити слева) вместо одной (игнорируя свободный конец веревки, за которую вы тянете), а это значит, что вы можете поднять его, потянув с силой всего 500 ньютонов — вдвое меньше! Вот почему мы говорим шкив с двумя колесами, и веревка, обернутая вокруг него Таким образом, механическое преимущество (ME) равно двум.

Механическое преимущество — это мера того, насколько простая машина умножает силу. Чем больше механическое преимущество, тем меньше силы вам потребуется, но на большем расстоянии вы должны использовать эту силу. Вес поднимается на 1 м, но теперь мы необходимо потянуть свободный конец веревки вдвое дальше (2 м). Как придешь? Чтобы вес поднялся на 1 м, вы должны сделать так, чтобы две поддерживающие его секции веревки поднялись на 1 м каждая. Для этого нужно потянуть свободный конец веревки на 2 метра. Обратите внимание, что мы также можем вычислить механическое преимущество, разделив расстояние, на которое мы должны тянуть веревку, зависит от расстояния, на которое перемещается вес.


Иллюстрация: Как работают шкивы №2: С двумя колесами это как если бы груз висел на двух веревках (две нити одной веревки слева), а шкив вдвое уменьшает необходимую вам подъемную силу. Это все равно, что поднимать гирю на двух веревках вместо одной. Но теперь вам нужно потянуть конец веревки вдвое дальше, чтобы поднять вес на такое же расстояние.

Четыре колеса

Хорошо, а что, если вы воспользуетесь четырьмя колесами, скрепленными длинной веревкой, которая петли над ними, как на картинке ниже? Вы можете видеть, что 100 кг масса (1000 ньютон) теперь висит на четырех секциях веревки (те, что слева, игнорируя свободный конец веревки, за которую вы тянете).Это значит каждая секция веревки выдерживает четверть общего веса в 1000 ньютонов, или 250 ньютонов, а чтобы поднять гирю в воздух, нужно тянуть только четверть силы — тоже 250 ньютонов. Чтобы вес увеличился на 1 м, необходимо укоротить каждую сечение веревки на 1 м, поэтому свободный конец веревки нужно потянуть на 4 метра. Мы говорим, что шкив с четырьмя колесами и веревка, намотанная таким образом, дает механическое преимущество в четыре, что вдвое лучше, чем шкив с двумя веревками и колесами.


Иллюстрация: Как работают шкивы №3: С четырьмя колесами и канатом, работающим на четыре секции, шкив снижает необходимую вам подъемную силу на четверть. Но вы должны протянуть конец веревки в четыре раза дальше.

Рекламные ссылки

Шкив похож на рычаг

Вероятно, вы видите, что шкив увеличивает силу так же, как качели, которые являются своего рода рычагом. Если вы хотите поднять кого-то в четыре раза тяжелее вас на качелях, вам нужно сесть в четыре раза дальше от точки равновесия (точки опоры), чем они.Если вы переместите конец рычага вниз на 4 см, их конец качелей переместится вверх только на 1 см. Когда они поднимаются, они получают определенное количество потенциальной энергии, равное их весу, умноженному на расстояние, на которое они перемещаются. Вы теряете точно такое же количество энергии — равное вашему весу (в четыре раза меньше), умноженному на расстояние, на которое вы перемещаетесь (в четыре раза больше). Вы можете перенести их гораздо больший вес, потому что вы перемещаете свой конец качелей на гораздо большее расстояние: рычаг качелей позволяет создавать больше силы, работая на большем расстоянии.

То же самое происходит и со шкивом, за исключением того, что вы тянете за веревку вместо того, чтобы двигать конец качели. Чтобы поднять что-то в четыре раза тяжелее, вы можете использовать ту же силу, но только если вы потянете веревку в четыре раза дальше. Если вы посмотрите на то, что происходит с обеих сторон шкива, и умножите силу на пройденное расстояние, вы обнаружите, что это то же самое. Со своей стороны вы используете небольшую силу на большом расстоянии. С другой стороны, вес намного больше, но он перемещается на меньшее расстояние.


Рисунок: Как шкив работает как рычаг: Как и в случае с рычагом, шкив может «волшебным образом» создать больше силы, но только если вы используете эту силу на большем расстоянии. Это почему? Читайте ниже!

В чем прикол?

Шкивы звучат великолепно — и они есть. Но обязательно должен быть поймать? Если вы можете поднять 100 кг (1000 ньютонов), потянув с силой, эквивалентной всего 25 кг (250 ньютонов), конечно, вы делаете только четверть меньше работы и используете всего на четверть меньше энергии? И если это правда, вы могли бы построить какой-то шкив, который на самом деле будет производить для вас энергию: положите всего в одной единице энергии и получите четыре единицы! Звучит великолепно!

Фото: есть ли скрытая загвоздка при использовании шкива? Почему бы не сделать простой шкив из конструктора (или просто самодельных материалов, таких как хлопковые катушки и веревка) и проверить его на себе.Нет лучше способ понять, как работают шкивы. С таким простым шкивом двух колес легко понять, что вам нужно потяните тетиву дважды, пока вес поднимается вверх.

К сожалению, такие удивительные вещи категорически запрещены. по закону физики, называемому сохранением энергии, который говорит, что вы всегда должны вкладывать столько энергии, сколько выходите. Итак, начнем подумайте о шкивах с точки зрения энергии. Если вы поднимете вес 100 кг (1000 ньютонов) на расстоянии 1 метра от земли, вы должны сделать то же самое объем работы, независимо от того, используете ли вы шкив или нет: вы должны переместить та же сила на том же расстоянии.Если вы используете шкив и уменьшаете силу, которую вы используете на четверть, вам все равно нужно сделать то же количество работы. Просто нужно дергать за конец веревки четыре раза больше, чтобы каждая из четырех опорных секций каната поднялась на То же количество. Это загвоздка со шкивом. Вы тянете с меньшим силы, но нужно тянуть дальше (и, вообще говоря, использовать сила дольше). Не тратя меньше энергии на шкив, вы на самом деле приходится использовать немного больше из-за трения, где трос трется о колеса шкива.Но кажется и чувствует шкив проще использовать, а это главное!


Фото: Шкив оборудования. 1) Эти маленькие ролики имеют крючки, поэтому их легко подвесить к потолку. Обратите внимание на то, что на колесах есть канавки, чтобы веревка не соскальзывала с них. Фото Паулы Арагон. 2) Гигантские шкивы на рычаге большого железнодорожного крана. Здесь используется огромный прочный трос.

Что такое блок и подкат?

В технике шкив, который я здесь описывал, иногда называют блоком и захватом : колеса и их крепления — это блоки, а веревки, которые обвивают их, — это снасти.В моих примерах один блок закреплен вверху, а другой блок перемещается вверх вместе с грузом. В более общем плане для инженеров шкив — это колесо, на которое вы натягиваете веревку или ремень для соединения одной части машины с другой, будь то подъем предметов, передача энергии или выполнение чего-либо еще. Однако в простой науке мы склонны использовать «шкив» только для обозначения связки колес и канатов для подъема.


Фото: два типа шкивов. Слева: блок и захват — это система на основе шкивов для подъема вещей, сделанная из блоков (секций колеса) и соединяющих их между собой.Он использовался для подъема ракетного оборудования в Центре космических полетов им. Маршалла НАСА. Фото Джеймса У. Розенталя, журнал «Исторический американский технический отчет», любезно предоставлено Библиотекой Конгресса США. Справа: колеса шкива также можно использовать для соединения различных частей машины. Здесь колесо шкива на большом двигателе приводит в движение другое колесо шкива на машине, находящейся на некотором расстоянии. В этом случае шкивы просто передают мощность. Фото: Исторический американский технический отчет, любезно предоставлено Библиотекой Конгресса США.

Рекламные ссылки

Узнать больше

На этом сайте

На других сайтах

  • Шкивы, блоки и другие снасти: отличная коллекция фотографий шкивов, составленная пользователем Flickr «Элси» (Лес Чатфилд), у которого отличный глаз. для детализации и раскрытия скрытой красоты механического мира.

Книги

Для младших читателей

Почему-то существует множество книг о шкивах для юных читателей (возрастная группа 6–10).Вот лишь некоторые из них, с которых можно начать:

  • «Рычаги и шкивы». Автор: Alex Brinded, Kidhaven / Greenwood, 2019. Простое введение для очень маленьких читателей, которое является частью базовой инженерной серии под названием «Заставить вещи работать». Текст написан четко, хотя фотографии и дизайн немного устарели. Возраст 6–9.
  • Exploring Science: Machines: Chris Oxlade, Anness, 2016. Практическое введение в шестерни, рычаги, шкивы и двигатели с помощью 20 простых экспериментов. Эта книга помогает представить шкивы в более широком контексте простых машин.Возраст 8–10.
  • Изготовление машин со шкивами: Крис Окслейд, Raintree / Capstone, 2015. Еще одно очень практичное 32-страничное введение, которое логически ведет нас через простые шкивы, составные шкивы, исторические машины, ремни и многое другое. Есть полезные дополнения к школьной библиотеке, в том числе интересные факты и глоссарий. Возраст 7–9.
  • Как работают шкивы: Джим Меццанотт. Гарет Стивенс, 2007. 24-страничное руководство, в котором представлены шкивы и показано, как мы используем их в повседневной жизни.Акцент здесь делается на шкивах как на средстве использования силы в наших интересах.
  • Что такое шкивы?: Хелен Фрост, Capstone Press, 2001. Очень простое иллюстрированное введение для младших читателей (возраст 7–10, я полагаю).

Эти две книги более общего характера, которые рассматривают науку о силе в более широком контексте:

  • «Можете ли вы почувствовать силу» Ричарда Хаммонда. Дорлинг Киндерсли, 2006/2015. Свежая книга о силах и физике для младших читателей. (Я был одним из консультантов и авторов этой книги.)
  • Сила и движение Питера Лафферти. Дорлинг Киндерсли, 2000. Классическая книга очевидцев DK, которая охватывает историю науки, а также современные технологии. Устаревший, но все же полезный.
Для читателей постарше
  • Принципы машиностроения, Джон Берд и Карл Росс, 2017. Подробное (288 страниц) введение в общую науку и принципы машиностроения.
  • Трактат о ремнях и шкивах Джона Ховарда Кромвеля, 1903 г.Классическая книга из более раннего возраста! Объясняет теорию шкивов (с математикой) и много иллюстраций. Доступен в различных форматах электронных книг.

Видео

  • Как работают шкивы: простое введение Чарли Марца. К сожалению, он использует имперские (американские) единицы футов и фунтов, но идею вы поняли. Если вы европеец, вы можете мысленно подставить метры и килограммы.
  • Как работают шкивы: более длинное и сложное введение из Академии Хана.Это объяснено ясно и очень хорошо, но страдает от рисования каракулей мышью и смешивания единиц измерения (ньютоны, футы, метры).

Пожалуйста, НЕ копируйте наши статьи в блоги и другие сайты

статей с этого сайта зарегистрированы в Бюро регистрации авторских прав США. Копирование или иное использование зарегистрированных работ без разрешения, удаление этого или других уведомлений об авторских правах и / или нарушение смежных прав может привести к серьезным гражданским или уголовным санкциям.

Авторские права на текст © Chris Woodford 2009, 2020. Все права защищены. Полное уведомление об авторских правах и условиях использования.

Подписывайтесь на нас

Сохранить или поделиться этой страницей

Нажмите CTRL + D, чтобы добавить эту страницу в закладки на будущее, или расскажите об этом своим друзьям с помощью:

Цитировать эту страницу

Вудфорд, Крис. (2009/2020) Шкивы. Получено с https://www.explainthatstuff.com/pulleys.html. [Доступ (укажите дату здесь)]

Подробнее на нашем сайте…

Мощные шкивы — Урок — Инженерное дело

(2 Рейтинги)

Быстрый просмотр

Уровень оценки: 4 (3-5)

Требуемое время: 30 минут

Зависимость урока: Нет

Тематические области: Геометрия, Физические науки, Решение проблем, Рассуждения и доказательства, Наука и технологии

Ожидаемые характеристики NGSS:


Резюме

Студенты продолжают изучать историю построения пирамиды, узнавая о простой машине, называемой шкивом.Они узнают, как можно использовать шкив для изменения направления приложенных сил и перемещения / подъема чрезвычайно тяжелых предметов, а также узнают о мощных механических преимуществах использования системы с несколькими шкивами. Студенты проводят простую демонстрацию, чтобы увидеть механическое преимущество использования шкива, и они определяют современные инженерные применения шкивов. На практике они видят, как шкив может изменять направление силы, разницу между фиксированными и подвижными шкивами и механическое преимущество, полученное при использовании нескольких / комбинированных шкивов.Они также узнают, как инженеры используют шкивы в повседневных целях. Эта инженерная программа соответствует научным стандартам нового поколения (NGSS).

Инженерное соединение

Инженеры

являются экспертами в использовании преимуществ простых машин во всех видах реальных приложений, приносящих пользу обществу. Они включают механическое преимущество шкивов в свою конструкцию многих современных конструкций, машин, продуктов и инструментов, таких как краны, лифты, флагштоки, тросы, моторы, велосипедные кольца / цепи, веревки для белья, ведра / веревки для колодцев, устройства для скалолазания, жалюзи на окнах и парусные / рыболовные лодки.Используя несколько шкивов в сочетании с двигателями и электроникой, инженеры создают сложные современные устройства, которые выполняют большую работу при очень небольшой мощности.

Цели обучения

После этого урока учащиеся должны уметь:

  • Продемонстрируйте, как используются шкивы.
  • Объясните, как в древние времена инженеры могли использовать шкивы для работы.
  • Определите современные приложения, в которых инженеры используют шкивы.

Образовательные стандарты

Каждый урок или задание TeachEngineering соотносится с одним или несколькими научными дисциплинами K-12, образовательные стандарты в области технологий, инженерии или математики (STEM).

Все 100000+ стандартов K-12 STEM, охватываемые TeachEngineering , собираются, обслуживаются и упаковываются сетью стандартов достижений (ASN) , проект D2L (www.achievementstandards.org).

В ASN стандарты иерархически структурированы: сначала по источникам; например , по штатам; внутри источника по типу; например , естественные науки или математика; внутри типа по подтипу, затем по классу, и т. д. .

NGSS: научные стандарты нового поколения — наука
Ожидаемые характеристики NGSS

3-ПС2-1.Спланируйте и проведите расследование, чтобы получить доказательства воздействия сбалансированных и неуравновешенных сил на движение объекта. (3-й степени)

Вы согласны с таким раскладом? Спасибо за ваш отзыв!

Щелкните здесь, чтобы просмотреть другие учебные программы, соответствующие этим ожиданиям.
Этот урок посвящен следующим аспектам трехмерного обучения NGSS:
Наука и инженерная практика Основные дисциплинарные идеи Общие концепции
Совместно спланируйте и проведите расследование для получения данных, которые послужат основой для доказательств, используя справедливые тесты, в которых контролируются переменные и количество рассмотренных испытаний.

Соглашение о выравнивании: Спасибо за ваш отзыв!

В научных исследованиях используются различные методы, инструменты и техники.

Соглашение о выравнивании: Спасибо за ваш отзыв!

Каждая сила действует на один конкретный объект и имеет как силу, так и направление. На покоящийся объект обычно действует несколько сил, но они складываются, чтобы получить нулевую чистую силу на объект.Силы, которые не равны нулю, могут вызывать изменения скорости или направления движения объекта. (Граница: на этом уровне используется качественное и концептуальное, но не количественное сложение сил.)

Соглашение о согласовании: Спасибо за ваш отзыв!

Соприкасающиеся предметы оказывают друг на друга силу.

Соглашение о выравнивании: Спасибо за ваш отзыв!

Причинно-следственные связи обычно выявляются.

Соглашение о выравнивании: Спасибо за ваш отзыв!

Ожидаемые характеристики NGSS

3-ПС2-2. Выполняйте наблюдения и / или измерения движения объекта, чтобы предоставить доказательства того, что шаблон может быть использован для прогнозирования будущего движения.(3-й степени)

Вы согласны с таким раскладом? Спасибо за ваш отзыв!

Щелкните здесь, чтобы просмотреть другие учебные программы, соответствующие этим ожиданиям.
Этот урок посвящен следующим аспектам трехмерного обучения NGSS:
Наука и инженерная практика Основные дисциплинарные идеи Общие концепции
Проведите наблюдения и / или измерения, чтобы получить данные, которые послужат основой для доказательства для объяснения явления или проверки проектного решения.

Соглашение о выравнивании: Спасибо за ваш отзыв!

Научные открытия основаны на распознавании закономерностей.

Соглашение о выравнивании: Спасибо за ваш отзыв!

Можно наблюдать и измерять закономерности движения объекта в различных ситуациях; когда это прошлое движение демонстрирует регулярный образец, будущее движение может быть предсказано по нему. (Граница: технические термины, такие как величина, скорость, импульс и векторная величина, не вводятся на этом уровне, но разрабатывается концепция, согласно которой для описания некоторых величин требуется как размер, так и направление.)

Соглашение о выравнивании: Спасибо за ваш отзыв!

Шаблоны изменений можно использовать для прогнозирования.

Соглашение о выравнивании: Спасибо за ваш отзыв!

Общие основные государственные стандарты — математика
Международная ассоциация преподавателей технологий и инженерии — Технология
ГОСТ Предложите выравнивание, не указанное выше

Какое альтернативное выравнивание вы предлагаете для этого контента?

Рабочие листы и приложения

Посетите [www.teachengineering.org/lessons/view/cub_simple_lesson05], чтобы распечатать или загрузить.

Больше подобной учебной программы

Поднимите собственный вес

Используя обычные материалы (катушки, веревку, мыло), учащиеся узнают, как можно использовать шкив, чтобы легко изменить направление силы, облегчая перемещение больших объектов. Они видят разницу между фиксированными и подвижными шкивами и механическое преимущество, полученное при использовании нескольких / комбинированных шкивов….

Рычаги подъема

Студенты знакомятся с тремя из шести простых механизмов, используемых многими инженерами: рычагом, шкивом и колесно-осевым механизмом. Как правило, инженеры используют рычаг для увеличения силы, приложенной к объекту, шкив для подъема тяжелых грузов по вертикальному пути и колесо с осью для увеличения крутящего момента…

Инженерное дело: простые машины

Студенты знакомятся с шестью типами простых машин — клином, колесом и осью, рычагом, наклонной плоскостью, винтом и шкивом — в контексте построения пирамиды, получая общее представление об инструментах, которые использовались с тех пор. древние времена и используются до сих пор.

Давайте переместим!

Учащиеся изучают методы с использованием простых машин, которые, вероятно, использовались при строительстве древних пирамид, а также обычную современную транспортировку материалов. Они узнают о колесе и оси как о средстве транспортировки материалов из карьера на строительную площадку.

Предварительные знания

Общие сведения о пирамидах. Знакомство с шестью простыми машинами, представленными в Уроке 1 этого раздела.

Введение / Мотивация

Мы активно изучаем простые машины и строим древние египетские пирамиды, которые были наняты инженерами для проектирования и строительства.Теперь мы собираемся углубиться в наше понимание шкивов, чтобы увидеть, сможем ли мы использовать эти знания, чтобы упростить работу нашего .

Никто не знает наверняка, были ли шкивы одной из простых машин , которые древние культуры использовали для строительства пирамид. Некоторые люди считают, что красивые и массивные пирамиды не могли быть построены с использованием чего-то столь же простого, как простые машины. У некоторых людей есть дикие теории о том, как возникли пирамиды — возможно, пришельцы с другой планеты пришли на Землю и построили их.Что ж, мы не знаем об этом, но мы знаем, что люди очень творческие и находчивые, когда они этого хотят. Пока мы ограничиваемся материалами и технологиями, которые были доступны древним египтянам, для нас приемлемо использовать наши знания для создания систем шкивов для построения нашей пирамиды.

Рис. 2. Шкив на рыболовном судне. Авторское право

Copyright © 2004 Microsoft Corporation, One Microsoft Way, Redmond, WA 98052-6399 USA. Все права защищены.

Шкив — это простая машина, состоящая из веревки (или веревки), намотанной вокруг колеса (иногда с канавкой), с одним концом веревки, прикрепленным к объекту, а другим концом, прикрепленным к человеку или двигателю. Шкивы могут показаться простыми, но они могут обеспечить мощное механическое преимущество, позволяющее легко выполнять подъемные операции.

Шкивы используются в повседневной жизни по-разному. Какие шкивы вы можете придумать? Некоторыми распространенными примерами являются большие строительные краны, которые используют шкивы для подъема тяжелых предметов с помощью двигателя, который обычно является очень слабым (см. Рисунок 1), силовые тренажеры в тренажерном зале, некоторые лифты, флагштоки, оконные жалюзи, велосипедные кольца / цепи, бельевые веревки и т. Д. ведро / веревка для колодца, тросы, моторы, устройства для скалолазания, а также парусные и рыболовные лодки (см. Рисунок 2).

Лифт — это современная инженерная система, использующая шкив, которая работает так же, как подъем большого камня при строительстве пирамиды. Без использования шкивов лифту потребовался бы большой двигатель, чтобы тянуть кабель прямо вверх. Вместо использования большого двигателя в некоторых лифтах используется большой вес, который использует силу тяжести , чтобы помочь поднять кабину лифта (см. Рисунок 3). В этой ситуации приводной двигатель может быть намного меньше и использоваться только для определения направления, в котором должен двигаться лифт.

Рис. 3. Добавление противовеса и двух шкивов с двигателем посередине упрощает перемещение лифта. Авторское право

Авторские права © Джастин Фриттс, Программа ITL, Инженерный колледж, Университет Колорадо в Боулдере, 2005.

Но как колесо с веревкой может помочь нам перемещать огромные камни, необходимые для постройки пирамиды? Что ж, шкивы помогают нам, изменяя направление силы , которую мы используем для подъема объекта. Вам легче подтянуться на веревке или потянуть вниз? Используя шкив, нам не нужно тянуть вверх за веревку, чтобы поднять прикрепленный к ней тяжелый предмет, но вместо этого мы можем потянуть за нее.Представьте себе флагшток в качестве примера. Когда вы тянете за веревку флагштока, флаг поднимается вверх по полюсу и развевается в воздухе. Это потому, что на флагштоке есть шкив. Используя шкивы для направления силы перенаправления , камень можно было поднять с земли, что позволило большему количеству людей ухватиться за веревку и увеличило вес, поэтому рабочим приходилось меньше тянуть. Чтобы еще больше упростить это усилие, рабочие, использующие шкив, могли перемещать большой камень вверх по пандусу, натягивая веревку при спуске по пандусу, используя гравитацию в своих интересах.

Настоящее механическое преимущество шкива заключается в использовании сразу нескольких шкивов. Использование нескольких шкивов уменьшает силу, необходимую для перемещения объекта, за счет увеличения длины веревки, используемой для подъема объекта. Механическое преимущество (MA) шкивной системы равно количеству тросов, поддерживающих подвижную нагрузку. (Это означает, что не считайте веревки, которые — только , используемые для перенаправления, см. Рисунки 6 и 7.) Мы знаем из других уроков по простым машинам, что для получения большего механического преимущества существует компромисс.Со шкивом компромисс — расстояние. Таким образом, если два шкива используются вместе, требуемое усилие уменьшается вдвое, но требуется вдвое больше веревки, чтобы поднять объект на ту же желаемую высоту. (Проиллюстрируйте эту концепцию студентам, проведя следующую демонстрацию в классе; см. Рисунок 4.)

Рис. 4. (слева) Используя один виток веревки, сложно стянуть метлы вместе. (справа) Использование нескольких оберток упрощает сборку веников.авторское право

Авторское право © Джастин Фриттс, Программа ITL, Инженерный колледж, Университет Колорадо в Боулдере, 2005 г.

Демонстрация классной метлы и веревки:

Для этой демонстрации требуются три ученика, две метлы и ~ 6 метров веревки. Привяжите веревку к одной из метел (метла 1) и оберните ее вокруг другой метлы (метла 2). Попросите двух учеников встать на расстоянии примерно метра друг от друга, каждый держит по одной метле, и постарайтесь держать метлы разделенными, пока третий ученик тянет за свободный конец веревки; Собрать палки метлы должно быть непросто.Затем снова оберните веревку вокруг каждой метлы. Попробуйте еще раз собрать учеников / метлы вместе; чем чаще вы наматываете веревку на метлы, тем легче третьему ученику стягивать остальных вместе! Это пример, демонстрирующий силу механического преимущества. Обратитесь к соответствующему упражнению «Тяга к собственному весу», чтобы помочь учащимся лучше понять системы шкивов, проиллюстрировав, как шкив можно использовать для легкого изменения направления силы, облегчая перемещение больших объектов.

Шкивы могут быть намного сложнее. Инженеры объединяют множество шкивов в систему шкивов, которая значительно снижает силу, необходимую для подъема объекта. Они часто используют системы шкивов для перемещения очень тяжелых предметов. Блок и снасть — это пример системы шкивов, которую можно прикрепить к чему угодно. Для этого может потребоваться много троса или веревки, но человек, использующий достаточное количество шкивов, может поднять несколько тонн. Инженеры используют блоки и подъемники вместе с двигателями и электроникой для создания современных устройств, которые работают с очень низким энергопотреблением, таких как краны и лифты.В Диснейленде инженеры даже используют систему шкивов, чтобы перемещать Тинкербелл по небу.

Мы не уверены, использовали ли египтяне шкивы, и еще не нашли никаких доказательств того, что они использовали, но мы знаем, что если бы они использовали их, жизнь была бы легче, чем если бы они этого не делали. Теперь, когда мы разбираемся в шкивах и располагаем современными материалами, мы можем строить пирамиды намного проще. Сегодня мы собираемся взглянуть на разработку системы шкивов и посмотреть, сможем ли мы разработать способ доставить наши самые тяжелые камни на вершину нашей пирамиды с помощью этой простой машины.

Предпосылки и концепции урока для учителей

Используйте презентацию PowerPoint «Шкивы и пирамиды» как полезный инструмент в классе. (Покажите презентацию PowerPoint или распечатайте слайды для использования с диапроектором. Презентация анимирована для продвижения стиля, основанного на запросах; каждый щелчок раскрывает новую точку зрения о каждой машине; попросите учащихся предложить характеристики и примеры, прежде чем вы их покажете .)

Шкив, простой механизм, помогает выполнять работу, изменяя направление сил и облегчая перемещение крупных объектов.Когда мы думаем о шкивах, большинство людей думают о типе шкива, который позволяет человеку перенаправлять направление силы. При использовании этого типа шкива, называемого фиксированным шкивом , при опускании веревки объект поднимается над землей. Также существуют подвижные шкивы и системы шкивов . Тысячи лет назад первые инженеры использовали шкивы для облегчения строительства и выполнения многих полезных повседневных задач. Многие обелиски были возведены с помощью шкивов, а в колодцах есть шкивы для сбора воды.

Фиксированные шкивы

Рис. 5. Фиксированный шкив без механического преимущества. Авторское право

Авторское право © Дениз У. Карлсон, Программа ITL, Инженерный колледж, Университет Колорадо в Боулдере, 2007.

Наиболее распространенная концепция шкива заключается в том, что это простой механизм, перенаправляющий силу. Это означает, что, обматывая веревку вокруг шкива и прикрепляя веревку к объекту, человек тянет веревку вниз, чтобы поднять объект, вместо того, чтобы поднимать объект (см. Рисунок 5; представьте, что поднимаете флаг).Хотя это полезное и удобное использование шкивов, оно имеет серьезное ограничение: сила, которую вы должны приложить, чтобы поднять объект, была такой же, как если бы вы просто поднимали объект без шкива (что приемлемо для подъема флажка, но недостаточно полезно при попытке поднять камень пирамиды). Это означает, что фиксированный шкив не дает никаких механических преимуществ.

Фиксированная конфигурация шкива полезна для поднятия объекта на уровень над вашей головой. Использование этого типа шкива также позволяет использовать силу тяжести.И, прикрепив веса к концу веревки, которую вы тянете, вы можете уменьшить силу, которую вы должны приложить. Этот тип шкива также можно использовать для балансировки объекта, прикрепляя предметы равного веса к обеим сторонам веревки, при этом ни один объект не перемещается. После приложения силы к любой из сторон система продолжает движение в этом направлении. Такая система шкивов используется в некоторых лифтах. К лифту прикреплен трос, который поднимается вокруг шкива, затем опускается и прикрепляется к противовесу.Двигатель, который приводит в движение кабину лифта, потребляет гораздо меньше энергии, поскольку противовес удерживает лифт в равновесии.

Подвижные шкивы

Рис. 6. Подвижный шкив с механическим преимуществом двух. Авторское право

Авторское право © Дениз У. Карлсон, Программа ITL, Инженерный колледж, Университет Колорадо в Боулдере, 2007.

Другой тип шкива — подвижный шкив. В системе с подвижным шкивом канат прикреплен к фиксированной (неподвижной) точке, шкив прикреплен к объекту, который вы хотите переместить, а другой конец каната остается свободным (см. Рисунок 6).При натяжении веревки шкив перемещается, и объект поднимается. Этот тип системы хорош, если вы пытаетесь поднять объект, расположенный под вами, до вашего уровня. В другом варианте, если обе стороны подвижной системы шкивов зафиксированы, а веревка натянута между фиксированными точками, система становится похожей на колесо и ось, потому что объект может перемещаться по веревке, если к нему приложена сила (например, , почтовый индекс).

Шкивные системы

Рис. 7. Система шкивов с механическим преимуществом двух.авторское право

Авторские права © Дениз Карлсон, Программа ITL, Инженерный колледж, Университет Колорадо в Боулдере, 2007.

Рис. 8. Система шкивов с механическим преимуществом в четыре, поскольку она имеет четыре несущих нагрузку сегмента веревки. Авторское право

Авторские права © Дениз У. Карлсон, Программа ITL, Инженерный колледж, Университет Колорадо в Боулдере, 2007.

Использование системы шкивов может быть гораздо более сложным и дает мощное механическое преимущество — значительно уменьшая силу, необходимую для перемещения объекта.Если используется один подвижный шкив (Рисунок 6), сила, необходимая для подъема объекта, прикрепленного к подвижному шкиву, уменьшается вдвое. Система шкивов, показанная на Рисунке 7, не меняет механического преимущества, показанного на Рисунке 6, однако она меняет направление необходимой силы. Компромисс заключается в том, что количество требуемой веревки увеличивается, а также увеличивается количество веревки, которую вы должны тянуть, чтобы поднять объект. Если к системе добавлены два фиксированных шкива и к объекту прикреплен второй подвижный шкив, сила, необходимая для подъема объекта, станет четвертью веса объекта, и потребуется в четыре раза больше веревки (см. Рисунок 8). презентация PowerPoint «Шкивы и пирамиды»).

Механическое преимущество

Сильное механическое преимущество шкива заключается в использовании нескольких шкивов одновременно. Комбинирование нескольких шкивов уменьшает силу, необходимую для перемещения объекта, за счет увеличения длины веревки, используемой для подъема объекта. Количество веревки можно найти по формуле веревка = исходное количество веревки x количество шкивов. Механическое преимущество (MA) шкивной системы равно количеству тросов, поддерживающих подвижную нагрузку. (Это означает, что не учитывайте веревки, которые используются только для перенаправления, см. Рисунки 6, 7 и 8.)

Сопутствующие мероприятия

Закрытие урока

Как шкивы могут облегчить нам жизнь? Шкивы — мощные простые машины. Они могут изменить направление силы, что может значительно облегчить нам перемещение чего-либо. Если мы хотим поднять объект весом 10 килограммов на высоту одного метра, мы можем поднять его прямо вверх или использовать шкив, чтобы мы могли потянуть за один конец, чтобы поднять объект.Использовать шкив намного проще, потому что, пока мы весим более 10 килограммов, мы можем просто повиснуть за конец веревки и воспользоваться силой тяжести, так что наш вес обеспечивает всю необходимую силу для подъема объекта.

Шкивы

также могут дать нам механическое преимущество, когда мы используем несколько веревок вместе и больше. Этот процесс уменьшает количество силы, необходимой для поднятия чего-либо.

Хотя мы не знаем, использовались ли шкивы древними строителями пирамид, мы знаем, что шкивы — идеальная простая машина для многих задач, необходимых для строительства пирамиды.В сегодняшнем высокотехнологичном мире инженеры по-прежнему используют шкивы для облегчения сложных задач. Без них наша жизнь была бы намного труднее.

Проведите итоговую оценку, как описано в разделе «Оценка». В заключение завершите таблицу KWL и задайте задачи со словами, в которых учащиеся вычисляют механическое преимущество наклонной плоскости (см. Раздел «Оценка»).

На других уроках этого раздела студенты изучают каждую простую машину более подробно и видят, как каждую из них можно использовать в качестве инструмента для построения пирамиды или современного здания.

Словарь / Определения

Фиксированный шкив: система шкивов, в которой шкив прикреплен к фиксированной точке, а веревка прикреплена к объекту.

сила: толкать или тянуть объект; способность выполнять работу.

гравитация: естественная сила притяжения, оказываемая Землей на объекты на ее поверхности или вблизи нее, стремящаяся притягивать их к центру тела.

механическое преимущество: преимущество, полученное за счет использования простых машин, позволяющих выполнять работу с меньшими усилиями. Облегчение задачи (что означает меньшее усилие), но может потребоваться больше времени или места для работы (большее расстояние, веревка и т. Д.). Например, приложение меньшей силы на большем расстоянии для достижения того же эффекта, что и приложение большой силы на небольшом расстоянии. Отношение выходной силы, прилагаемой к машине, к приложенной к ней входной силе.

подвижный шкив: система шкивов, в которой шкив прикреплен к объекту; один конец веревки прикреплен к фиксированной точке, а другой конец веревки свободен.

шкив: простой механизм, который изменяет направление силы, часто для подъема груза. Обычно состоит из рифленого колеса, в котором движется натянутый трос или цепь.

перенаправить силу: чтобы изменить направление вашего толчка или тяги, чтобы получить преимущество над задачей.

простая машина: машина с небольшим количеством движущихся частей или без них, которая используется для облегчения работы (дает механическое преимущество). Например, клин, колесо и ось, рычаг, наклонная плоскость, винт или шкив.

работа: сила, действующая на объект, умноженная на расстояние, на которое он перемещается. W = F x d (сила, умноженная на расстояние).

Оценка

Оценка перед уроком

Мозговой штурм: Предложите учащимся участвовать в открытом обсуждении в классе. Напомните студентам, что в ходе мозгового штурма ни одна идея или предложение не являются «глупыми». Все идеи следует уважительно выслушивать. Занять некритическую позицию, поощрять дикие идеи и препятствовать критике идей.Попросите их поднять руки, чтобы ответить. Напишите их идеи на доске. Спросите у студентов:

  • Что такое простые машины? В чем преимущество простых машин? (Возможные ответы: машина с небольшим количеством движущихся частей или без них, которая используется для облегчения работы. Простые машины облегчают работу, создавая механическое преимущество, например, заменяя большее расстояние за меньшее усилие.)
  • Почему инженеры заботятся о простых машинах? (Ответ: современное оборудование, конструкции и инструменты используют простые машинные принципы для выполнения простых и сложных задач.Хотя вы, возможно, никогда не увидите шкив в действии на стройплощадке, шкивы спрятаны внутри двигателей, внутри кранов и все время работают за кулисами.)

Таблица «Знай / хочу знать / учиться» (KWL): Создайте классную диаграмму KWL, чтобы помочь организовать изучение новой темы. На большом листе бумаги или на классной доске нарисуйте таблицу с заголовком «Простые машины: шкивы». Нарисуйте три столбца с названиями K, W и L, которые представляют, что студенты знают о шкивах, что они хотят, чтобы знал о шкивах и что изучил о шкивах и их механических преимуществах.Заполняйте разделы K и W во время введения к уроку по мере появления фактов и вопросов. Заполните L-часть в конце урока.

Оценка после введения

Вопросы для обсуждения: Запрашивайте, объединяйте и обобщайте ответы студентов.

  • Что мы наблюдали во время демонстрации метлы и веревки? Каков был эффект от добавления шкивов? (Возможные ответы: шкивы в действии, использование механических преимуществ для облегчения работы, добавление большего количества шкивов (обмоток веревки), которые упростили стягивание двух щеток вместе.)
  • Объясните, как найти механическое преимущество системы шкивов. (Ответ: механическое преимущество шкива в том, что система равна количеству веревок, поддерживающих подвижный шкив.)
  • В чем заключается компромисс между механическим преимуществом системы шкивов? (Ответ: расстояние или длина веревки.)
  • Какие примеры современных изделий инженеры разработали со шкивами? (Возможные ответы: краны, лифты, блоки и снасти на лодках, флагштоки, тросы, моторы, велосипедные кольца / цепи, устройства для скалолазания, оконные жалюзи и парусные лодки.)

Итоги урока Оценка

Таблица KWL (Заключение): Как класс, завершите столбец L таблицы KWL, как описано в разделе «Оценка перед уроком». Составьте список всего, что студенты узнали о шкивах и их механических преимуществах. Были ли даны ответы на все вопросы W? Что нового они узнали? Можно ли использовать шаблон, основанный на их наблюдениях за движением объекта, для предсказания будущего движения?

Задачи со словами: Оцените понимание учащимися концепций урока, задав следующие задачи со словами.Напишите на доске: Механическое преимущество системы шкивов = количество отрезков каната, поддерживающих нагрузку.

  • Если бы мы использовали один фиксированный шкив и хотели поднять камень на 100 метров, сколько силы и веревки потребовалось бы, чтобы поднять 500-килограммовый камень? (Ответ: сила равна весу камня, поэтому 500 килограммов. Поскольку мы используем только один шкив, веревка должна быть не менее 100 метров [расстояние от шкива до камня], но больше вероятно, будет около 200 метров [одна длина до шкива от камня и одна длина от шкива до вас].)
  • Если бы мы использовали 10 шкивов в системе и хотели бы поднять камень на 100 метров, сколько силы и веревки нам понадобится, чтобы поднять тот же самый 500-килограммовый камень? (Ответ: Сила может быть уменьшена до 1/10 веса камня [50 килограммов], поскольку у нас будет 10 веревок со шкивами. Однако нам легко понадобится 1000 метров веревки [в 10 раз длиннее одной веревки] или 2000 метров, если бы мы были на одном уровне со скалой.)

Мероприятия по продлению урока

Попробуйте сделать человеческий шкив.Вам понадобится доска, прочная веревка и место с верхней опорой, например, футбольные ворота или игровая площадка. Оберните один конец веревки вокруг веревки 2 x 4 (или чего-нибудь прочного, например, сиденья от качелей), а другой конец веревки оберните вокруг ворот так, чтобы задний конец висел на земле. Позвольте одному ребенку сесть на 2 x 4, пока двое других детей пытаются поднять их, потянув за свободный конец веревки. Оборачивайте веревку вокруг ворот или опоры, пока двое детей не смогут легко поднять и опустить сидящего ребенка.Может быть полезно начать сидящего ребенка из положения стоя (обе ноги на земле).

Если учащиеся не знакомы с зиплайном, предложите им изучить это в Интернете. Застежка-молния — забавный пример подвижного шкива.

Предложите более продвинутым ученикам вычислить механическое преимущество использования нескольких шкивов, требующих деления с остатками или дробями.

использованная литература

Словарь.com. ООО «Издательская группа« Лексико ». По состоянию на 25 января 2006 г. (Источник некоторых словарных определений с некоторой адаптацией) http://www.dictionary.com

авторское право

© 2005 Регенты Университета Колорадо.

Авторы

Джастин Фриттс; Лоуренс Э. Карлсон; Жаклин Салливан; Малинда Шефер Зарске; Дениз Карлсон, при участии студентов, участвовавших в курсе подготовки инженерного корпуса К-12 весной 2005 года.

Программа поддержки

Комплексная программа преподавания и обучения, Инженерный колледж, Университет Колорадо в Боулдере

Благодарности

Содержание этих программ электронных библиотек было разработано в рамках Комплексной программы преподавания и обучения в рамках гранта GK-12 Национального научного фонда. 0338326. Однако это содержание не обязательно отражает политику Национального научного фонда, и вам не следует предполагать, что оно одобрено федеральным правительством.

Последнее изменение: 20 июля 2021 г.

.

alexxlab

Related Posts

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *