Сталь 45: характеристики, свойства, аналоги
Марка стали 45 — одна из самых востребованных и популярных марок конструкционных углеродистых сталей, соответствует требованиям ГОСТ 1050-2013, ДСТУ 7809
Классификация: Сталь конструкционная углеродистая качественная.
Продукция: Листовой и сортовой прокат, в том числе фасонный.
Химический состав стали 45 в соответствии с ДСТУ 7809, %
Si |
Mn |
P |
Ni |
Cr |
S |
Cu |
As |
Fe |
|
0.17-0.37 |
0.5-0.8 |
<0.035 |
<0.25 | <0.25 |
<0.04 |
<0.25 | <0.08 |
~97 |
Механические свойства стали 45 после нормализации
Стандарт |
Состояние поставки |
Предел текучести, Rm(МПа) |
Предел краткосрочного сопротивления, ReH (МПа) |
Минимальное относительное удлиннение подовження σ,% |
Относительное сужение, % |
ГОСТ 1050 |
После нормализации |
355 |
600 |
16 |
40 |
ДСТУ 7809 |
После нормализации |
355 |
600 |
16 |
40 |
Аналоги стали 45
США | 1044, 1045, 1045H, G10420, G10430, G10440, G10450, M1044 |
Япония | S45C, S48C, SWRCh55K, SWRCh58K |
Евросоюз | 1.1191, 2C45, C45, C45E, C45EC, C46 |
Китай | 45, 45H, ML45, SM45, ZG310-570, ZGD345-570 |
Швеция | 1650, 1672 |
Румыния | OLC45, OLC45q, OLC45X |
Чехия | 12050, 12056 |
Австралия | 1045, HK1042, K1042 |
Австрия | C45SW |
Южная Корея | SM45C, SM48C |
Германия | 1.0503, 1.1191, 1.1193, C45, C45E, C45R, Cf45, Ck45, Cm45, Cq45 |
Франция | 1C45, 2C45, AF65, C40E, C45, C45E, C45RR, CC45, XC42h2, XC42h2TS, XC45, XC45h2, XC48, XC48h2 |
Англия | 060A47, 080M, 080M46, 1449-50CS, 1449-50HS, 50HS, C45, C45E |
Италия | 1C45, C43, C45, C45E, C45R, C46 |
Бельгия | C45-1, C45-2, C46 |
Испания | C45, C45E, C45k, C48k, F.114, F.1140, F.1142 |
Болгария | 45, C45, C45E |
Венгрия | A3, C45E |
Польша | 45 |
OLC45, OLC45q, OLC45X | |
Чехия | 12050, 12056 |
Применение
Сталь марки 45 применяется при изготовлении горячекатаного и холоднокатаного плоского и сортового проката и поковок, которые впоследствии используются при создании металлоконструкций и изделий машиностроительного назначения различных форм и размеров. Конструкционная сталь 45 имеет обширное применение в производстве шпинделей и кулачков, шестерней, крепежных изделий, валов различного назначения. Из такой стали изготавливаются ответственные изделия (консоли, оси, штоки, балки, плунжеры и пр.), от которых требуется повышенная прочность после термической обработки.Сваривание
Марка стали 45 — трудносвариваемая. Для достижения качественных сварных соединений необходимы дополнительные операции: подогрев до +200-300°С при сварке, а также термообработка стали 45 после сварки, то есть её отжиг.
характеристика материала / Сталь конструкционная углеродистая качественная / Марочник сталей — Металлинвест. Управляющая компания
Характеристика материала 45Марка: | 45 |
Заменитель: | 40Х, 50, 50Г2 |
Классификация: | Сталь конструкционная углеродистая качественная |
Применение: | вал-шестерни, коленчатые и распределительные валы, шестерни, шпиндели, бандажи, цилиндры, кулачки и другие нормализованные, улучшаемые и подвергаемые поверхностной термообработке детали, от которых требуется повышенная прочность. |
Химический состав в % материала 45.
C | Si | Mn | Ni | S | P | Cr | Cu | As |
0.42-0.5 | 0.17-0.37 | 0.5-0.8 | до 0.25 | до 0.04 | до 0.035 | до 0.25 | до 0.25 | до 0.08 |
Температура критических точек материала 45.
Ac1=730, Ac3(Acm)=755, Ar3(Arcm)=690, Ar1=780, Mn=350 |
Механические свойства при Т=20oС материала 45.
Сортамент | Размер | Напр. | sв | sT | d5 | y | KCU | Термообр. |
— | мм | — | МПа | МПа | % | % | кДж / м2 | — |
Лист горячекатан. | 80 | 590 | 18 | Состояние поставки | ||||
Полоса горячекатан. | 6-25 | 600 | 16 | 40 | Состояние поставки | |||
Поковки | 100-300 | 470 | 245 | 19 | 42 | 390 | Нормализация | |
Поковки | 300-500 | 470 | 245 | 17 | 35 | 340 | Нормализация | |
Поковки | 500-800 | 470 | 245 | 15 | 340 | Нормализация |
Твердость материала 45 горячекатанного отожженного | HB=170 |
Твердость материала 45 калиброванного нагартованного | HB=207 |
Физические свойства материала 45.
T | E 10-5 | a106 | l | r | C | R 109 |
Град | МПа | 1/Град | Вт/(м·град) | кг/м3 | Дж/(кг·град) | Ом·м |
20 | 2.00 | 7826 | ||||
100 | 2.01 | 11.9 | 48 | 7799 | 473 | |
200 | 1.93 | 12.7 | 47 | 7769 | 494 | |
300 | 1.90 | 13.4 | 44 | 7735 | 515 | |
400 | 1.72 | 14.1 | 41 | 7698 | 536 | |
500 | 14.6 | 39 | 7662 | 583 | ||
600 | 36 | 7625 | 578 | |||
700 | 15.2 | 31 | 7587 | 611 | ||
800 | 27 | 7595 | 720 | |||
900 | 26 | 708 |
Технологические свойства материала 45.
Свариваемость: | трудносвариваемая. |
Флокеночувствительность: | малочувствительна. |
Склонность к отпускной хрупкости: | не склонна. |
Обозначения:
Механические свойства: | ||
sв | — Предел кратковременной прочности, [МПа] | |
sT | — Предел пропорциональности (предел текучести для остаточной деформации), [МПа] | |
d5 | — Относительное удлинение при разрыве, [ % ] | |
y | — Относительное сужение, [ % ] | |
KCU | — Ударная вязкость, [ кДж / м2] | |
HB | — Твердость по Бринеллю |
Физические свойства: | ||
T | — Температура, при которой получены данные свойства, [Град] | |
E | — Модуль упругости первого рода , [МПа] | |
a | — Коэффициент температурного (линейного) расширения (диапазон 20o — T ) , [1/Град] | |
l | — Коэффициент теплопроводности (теплоемкость материала) , [Вт/(м·град)] | |
r | — Плотность материала , [кг/м3] | |
C | — Удельная теплоемкость материала (диапазон 20o — T ), [Дж/(кг·град)] | |
R | — Удельное электросопротивление, [Ом·м] |
Свариваемость: | |
без ограничений | — сварка производится без подогрева и без последующей термообработки |
ограниченно свариваемая | — сварка возможна при подогреве до 100-120 град. и последующей термообработке |
трудносвариваемая | — для получения качественных сварных соединений требуются дополнительные операции: подогрев до 200-300 град. при сварке, термообработка после сварки — отжиг |
Сталь 45: властивості, характеристики, аналоги
Характеристика марки сталі 45
Сталевий сплав марки 45 — популярна і широко затребувана в інжинірингу якісна конструкційна вуглецева сталь. Масове застосування обумовлює її виробництво у вигляді листового, сортового і фасонного прокату.
Хімічний склад
У формулі залізовуглецевого сплаву присутні численні присадки, що оптимізують фізико-хімічні властивості металу. Назвемо основні елементи сталі 45: залізо, вуглець, кремній, марганець, нікель, сірка, фосфор, хром, мідь і миш’як.
Хімічний склад сталі 45 в процентному співвідношенні
Приблизний склад сплаву
Механічні властивості гарячекатаної і кованої сталі (ГОСТ 1050-2013 / ДСТУ 7809)
Ключові властивості сталей 45 відображені в таблиці 2. Цифри отримані емпіричним шляхом і мають середньостатистичне значення.
Механічні властивості вуглецевої якісної конструкційної сталі
Марка сталі |
Для марки сталі 2-ої категорії |
Для сталі всіх категорій HB, не більше |
||||||
Тимчасовий опір, σв |
Межа міцності, σт |
δ |
Ψ |
Без термообробки |
Після отжигу або високого відпуску |
|||
МПа |
МПа |
% |
% |
МПа |
кгс/м2 |
МПа |
кгс/мм2 |
|
45 |
598 |
353 |
16 |
40 |
2246 |
229 |
1933 |
197 |
Через підвищений вміст вуглецю для всіх сталей 45 характерна задовільна зварюваність і поява в околошовній зоні гарячих і холодних тріщин. Обробку кромок виконують так само як і при обробці низьковуглецевих сплавів, але при правильному виборі режиму обробки сталь 45 може зварюватись за допомогою MMA, TIG і ERW зварювання. Після зварювальних робіт металовироби або зона зварювання в металоконструкціях підлягають відпалу.
Застосування сталі 45
Сталь 45 у вигляді металопрокату використовується для виробництва металевих конструкцій і для виготовлення:
- осей, колінчастих та розподільчих валів, кронштейнів, штоків, плунжерів, зубчастих шестерень і коліс, болтів і гайок підвищеної міцності і з середніми показниками в’язкості металу. Вироби використовуються після поліпшення;
- деталей, що експлуатуються без ударних навантажень і схильні до підвищеного зносу. Для поліпшення міцності використовують термозагартування;
- металовиробів з підвищеною твердістю поверхні. Для поліпшення характеристик використовують методи термічного поверхневого зміцнення, але деталі не розраховані на критичні деформації.
Аналоги сталі 45 в міжнародній практиці
Великобританія |
060A47, 080M/M46, 1449-50CS/HS, 50HS |
Євросоюз |
C45/E/EC, C46, 2C45, 1.1191 |
КНР |
45/H, ML45, SM45, ZG310-570, ZGD345-570 |
США |
1044, 1045/H,G10420, G10430, G10440, G10450, M1044 |
Франція |
1C45, 2C45, AF65, C40E, C45RR, CC45, XC42h2, XC42h2TS, XC45/h2, XC48 |
Японія |
S45C, S48C. SWRCh55K, SWRCh58K |
Сталь максимум: Сталь 45
Изделия из стали 45 часто используются в современной промышленности, а также при организации различного производства. Они представлены в виде:
- распределительных и коленчатых валов,
- стандартных шестерней и вал-шестерней,
- бандажей и кулачков,
- шпинделев и цилиндров,
- различных нормализованных, улучшаемых и подвергаемых поверхностной термической обработке деталей с повышенной прочностью.
Точный химический состав сплава 45
Условия эксплуатации изделий из этого материала, а также данные по химическому составу и процентному соотношению веществ, представленных в стали марки 45, регламентируются нормами ГОСТ 1050-88.
В данный сплав входит 9 элементов. Основными и наиболее значимыми здесь являются марганец и углерод. Дополнительными считаются:
- Кремний
- Никель
- Медь
- Хром
- Мышьяк
- Сера
- Фосфор
Полная информация по процентному соотношению всех веществ, входящих в состав стали марки 45, представлено в таблице ниже и на диаграмме.
Mn |
C |
Si |
Ni |
Cu |
Cr |
As |
S |
Р |
от 0,5 до 0,8 |
от 0,42 до 0,5 |
0,17 – 0,37 |
менее 0,3 |
меньше 0,3 |
до 0,25 |
менее 0,08 |
до 0,04 |
меньше 0,035 |
Свойства стали марки 45
Удельный вес материала составляет 7826 кг/м3. Твердость сплава по Бринеллю достигает 10 -1 = 170 МПа. Критические точки наступают при следующих температурах:
- Ac1 = 730°
- Ac3(Acm) = 755°
- Ar3(Arcm) = 690°
- Ar1 = 780°
- Mn = 350°
Сплав относится к трудносвариваемым. Для данного материала доступны только следующие виды сварки:
- ручная дуговая (РДС),
- контактно-точечная (КТС).
При всех вариантах сварки необходим предварительный нагрев и последующая термическая обработка элементов.
Начальная температура термической обработки +1250°С, конечная +700°С. Изделия с сечением до 400 мм охлаждаются на воздухе.
Обрабатываемость резанием доступна в горячекатаном состоянии при твердости по Бринеллю 170-179 единиц и временном сопротивлении разрыву 640 МПа.
Сталь марки 45 не склонна к отпускной хрупкости и имеет невысокий уровень флокеночувствительности.
Отечественные и зарубежные аналоги стали 45
Россия |
50Г2, 50, 40Х |
ЕС |
1.1191, C46, C45, C45E, 2C45, C45EC |
Америка |
1044, 1045, M1044, 1045H, G10420, G10440, G10430, G10450 |
Япония |
S45C, SWRCh55K, SWRCh58K, S48C |
Китай |
45, 45H, SM45, ML45, ZGD345-570, ZG310-570 |
Южная Корея |
SM48C, SM45C |
Германия |
C45, C45E, C45R, 1.0503, 1.1191, 1.1193, Ck45, Cf45, Cm45, Cq45 |
Франция |
1C45, 2C45, C40E, C45, C45E, C45RR, AF65, CC45, XC42h2TS, XC42h2, XC45, XC48, XC45h2, XC48h2 |
Англия |
060A47, 080M46, 080M, 1449-50HS, 1449-50CS, 50HS, C45E, C45 |
Италия |
1C45, C43, C45E, C45, C45R, C46 |
Бельгия |
C46, C45-1, C45-2 |
Испания |
C45, F.114, F.1142, F.1140, C45k, C45E, C48k |
Швеция |
1650, 1672 |
Швейцария |
C45, Ck45 |
Болгария |
45, C45, C45E |
Австрия |
C45SW |
Венгрия |
A3, C45E |
Румыния |
OLC45, OLC45X, OLC45q |
Польша |
45 |
Чехия |
12050, 12056 |
Австралия |
1045, K1042, HK1042 |
Доска объявлений | Сталь 45 — характеристика, химический состав, свойства, твердостьСталь 45Общие сведения
Химический состав
Механические свойстваМеханические свойства при повышенных температурах
Механические свойства проката
Механические свойства поковок
Механические свойства в зависимости от температуры отпуска
Механические свойства в зависимости от сечения
Технологические свойства
Температура критических точек
Ударная вязкостьУдарная вязкость, KCU, Дж/см2
Предел выносливости
ПрокаливаемостьТвердость для полос прокаливаемости HRCэ (HRB).
Физические свойства
[ Назад ] |
показатель высокой прочности и технические характеристики
Сталь — это деформируемый сплав железа (подвергающийся ковке) с углеродом и другими элементами. Ее получают из состава, в котором есть место для чугуна и стального лома, обрабатывают в мартеновских печах, кислородных конвертерах и электрических печках. Если в сплаве железа более 2,14% углерода, тогда это уже чугун.Классификация стали
На рынке 99% всей стали представлен материал конструкционный в широком смысле. К этой группе относятся стали для возведения строительных сооружений, изготовления деталей машин, упругих элементов, инструментов, а также для особых условий работы, имеющие определенные показатели, например, теплостойкие, нержавеющие и другие.
Главными качествами материала являются:
- Прочность, которая характеризуется способностью к выдерживанию достаточного напряжения.
- Пластичность, эта характеристика позволяет выдерживать деформации без ущерба разрушения как при производстве конструкций, так и в точках перегрузок при их работе.
- Вязкость способствует поглощению работы внешних сил, препятствует распространению трещин.
- Жаропрочность и холодостойкость.
- Упругость и твердость.
Сталь и сплавы классифицируют:
- По составу химическому, структурному.
- По качеству. На данный показатель влияет способ производства и содержание вредных примесей.
- По степени раскисления и затвердеванию металла в изложнице.
- По применению.
Химический состав
В зависимости от содержания углерода делят на группы:
- углерода менее 0,3%С — малоуглеродистые.
- Среднеуглеродистые, когда его от 0,3 до 0,7% С.
- Более 07 %С — высокоуглеродистые.
Чтобы улучшить технологические свойства материала сталь легируют. Что это значит? Кроме обычных примесей в ее состав добавляют в определенных сочетаниях легирующие элементы. Обычно лучшие свойства появляются, когда легируют комплексно.
В легированных сталях классификация происходит благодаря суммарному проценту содержащихся в ней примесей:
- Низколегированные, в которых менее 2,5%.
- Среднелегированные — от 2,5% до 10%.
- Высоколегированные — выше 10%.
Структурный состав
Легированные стали подразделяются на виды по структурному анализу:
- В оттоженном виде — ледебуритный, ферритный, доэвтектоидный, заэвтектоидный, аустенитный.
- В нормализованном виде — аутенитный, мартенситный, перлитный.
Содержание примесей
По способу производства и содержании примесей данный материал делится на 4 группы:
- Обыкновенного качества. По химическому составу являются углеродистыми. Они выплавляются посредством кислорода или в мартеновских печах. Данные стали являются недорогими и уступают по своим свойствам другим классам.
- Качественные. По химическому свойству являются углеродистыми или легированными. Так же, как и предыдущий тип, выплавляются в конвертерах или в мартеновских печках, при этом соблюдаются более строгие требования к составу шихты, работам по плавке и разливке.
- Высококачественные. Данный тип выплавляется, как правило, в электрических печах. Очень высокого качества сталь изготавливается благодаря электропечам с электрошлаковым переплавом. Применяются также другие совершенные методы, направленные на повышение чистоты по неметаллическим включениям (сера и фосфор).
- Благодаря электрошлаковому переплаву, который эффективно очищает от сульфидов и оксидов, создаются особовысококачественные стали. Такие стали бывают только легированными. Они проходят обработку в электропечах, к ним применяются специальные методы электрометаллургии.
Применение
Шарикоподшипниковые хромистые стали применяются для изготовления подшипников. Этот вид зарекомендовал себя, как высокопрочный, твердый и контактно-выносливый материал.
Упругой деформацией обладают некоторые виды стали, поэтому они применяются для пружин, рессор и других изделий. Многие из них должны выдерживать циклические нагрузки. Поэтому основными требованиями к данным видам стали являются высокие значения упругости, текучести, выносливости, также необходима пластичность и сопротивление хрупкому разрушению.
Высокопрочные стали обладают прочностью при необходимой пластичности, малой чувствительностью к надрезам, низким порогам хладноломкости, отличной свариваемостью, высоким показателям сопротивления хрупкому разрушению.
Сталь 45
Этот сплав стали отличается от других набором особых характеристик, которые присущи только этой марке. Она отличается применением и высокой функциональностью, уникальным составом химических соединений, совокупностью литейных и других производственных параметров.
Применение
Сталь под номером 45 изготавливается в соответствии со всеми требованиями ГОСТа. Из нее делают валы всех видов, бандажи, шпиндели, цилиндры различных видов, кулачки разнообразной формы. По сути, применяется для конструкций и устройств, функциональным назначением которых является устойчивость к огромным нагрузкам, где требуется демонстрировать повышенные показатели износостойкости, прочности, нечувствительности к коррозии.В составе стали марки 45 в соответствии с ГОСТ находятся такие элементы, как фосфор, мышьяк, медь, никель, марганец и другие вещества. Данная сталь обладает большим набором механических характеристик. Поэтому она способна вынести практически все климатические и температурные колебания. Испытывают данный вид стали при температурном интервале от 200 до 600 градусов.
Технические характеристики
Данная сталь относится к тем материалам, которые трудно поддаются сварке, однако, при этом у нее отсутствует отпускная способность. Эта ее особенность часто очень хорошо влияет на изготовление сложных форм и деталей. Благодаря характеристикам данной стали, ударная вязкость изделий из нее всецело зависит от толщины взятого листа, причем наибольшим значением будет обладать самый толстый исходник. Но, даже несмотря на данный параметр, можно с уверенностью сказать, что практически любая конструкция, изготовленная из стали этой марки, выдержит практически любые, в том числе и самые интенсивные воздействия.Это стало возможным благодаря применяемым способам обработки, а также производственному процессу, который разработан в соответствии с ГОСТ. Безусловно, в мире еще не создали материалы, обладающие бесконечной выносливостью к различным воздействиям, поэтому данный металл в этом смысле не исключение. Но благодаря высоким свойствам сырья, из которых производят материал, у него великолепные показатели.
Оцените статью: Поделитесь с друзьями!Сталь 45 | ТД СпецСплав
Характеристика материала 45
Марка: | 45 |
Заменитель: | 40Х, 50, 50Г2 |
Классификация: | Сталь конструкционная углеродистая качественная |
Применение: | вал-шестерни, коленчатые и распределительные валы, шестерни, шпиндели, бандажи, цилиндры, кулачки и другие нормализованные, улучшаемые и подвергаемые поверхностной термообработке детали, от которых требуется повышенная прочность. |
ГОСТ | ГОСТ 1050-88 |
Химический состав в % стали 45
C | Si | Mn | Ni | S | P | Cr | Cu | As |
0.42 – 0.5 | 0.17 – 0.37 | 0.5 – 0.8 | до 0.25 | до 0.04 | до 0.035 | до 0.25 | до 0.25 | до 0.08 |
Температура критических точек стали 45
Ac1 = 730 , Ac3(Acm) = 755 , Ar3(Arcm) = 690 , Ar1 = 780 , Mn = 350
Механические свойства при Т=20
oС стали 45Сортамент | Размер | Напр. | sв | sT | d5 | y | KCU | Термообр. |
– | мм | – | МПа | МПа | % | % | кДж / м2 | – |
Лист горячекатанного | 80 | 590 | 18 | Состояние поставки | ||||
Полоса горячекатаного | 6 – 25 | 600 | 16 | 40 | Состояние поставки | |||
Поковки | 100 – 300 | 470 | 245 | 19 | 42 | 390 | Нормализация | |
Поковки | 300 – 500 | 470 | 245 | 17 | 35 | 340 | Нормализация | |
Поковки | 500 – 800 | 470 | 245 | 15 | 30 | 340 | Нормализация |
Твердость стали 45
Твердость материала 45 горячекатанного отожженного | HB 10 -1 = 170 МПа |
Твердость материала 45 калиброванного нагартованного | HB 10 -1 = 207 МПа |
Физические свойства материала 45
T | E 10– 5 | a 10 6 | l | r | C | R 10 9 |
Град | МПа | 1/Град | Вт/(м·град) | кг/м3 | Дж/(кг·град) | Ом·м |
20 | 2 | 7826 | ||||
100 | 2.01 | 11.9 | 48 | 7799 | 473 | |
200 | 1.93 | 12.7 | 47 | 7769 | 494 | |
300 | 1.9 | 13.4 | 44 | 7735 | 515 | |
400 | 1.72 | 14.1 | 41 | 7698 | 536 | |
500 | 14.6 | 39 | 7662 | 583 | ||
600 | 14.9 | 36 | 7625 | 578 | ||
700 | 15.2 | 31 | 7587 | 611 | ||
800 | 27 | 7595 | 720 | |||
900 | 26 | 708 | ||||
T | E 10– 5 | a 10 6 | l | r | C | R 10 9 |
Технологические свойства материала 45
Свариваемость: | трудносвариваемая. |
Флокеночувствительность: | малочувствительна. |
Склонность к отпускной хрупкости: | не склонна. |
Обозначения:
Механические свойства : | |
sв | – Предел кратковременной прочности , [МПа] |
sT | – Предел пропорциональности (предел текучести для остаточной деформации), [МПа] |
d5 | – Относительное удлинение при разрыве , [ % ] |
y | – Относительное сужение , [ % ] |
KCU | – Ударная вязкость , [ кДж / м2] |
HB | – Твердость по Бринеллю , [МПа] |
Физические свойства : | |
T | – Температура, при которой получены данные свойства , [Град] |
E | – Модуль упругости первого рода , [МПа] |
a | – Коэффициент температурного (линейного) расширения (диапазон 20o – T ) , [1/Град] |
l | – Коэффициент теплопроводности (теплоемкость материала) , [Вт/(м·град)] |
r | – Плотность материала , [кг/м3] |
C | – Удельная теплоемкость материала (диапазон 20o – T ), [Дж/(кг·град)] |
R | – Удельное электросопротивление, [Ом·м] |
Свариваемость : | |
без ограничений | – сварка производится без подогрева и без последующей термообработки |
ограниченно свариваемая | – сварка возможна при подогреве до 100-120 град. и последующей термообработке |
трудносвариваемая | – для получения качественных сварных соединений требуются дополнительные операции: подогрев до 200-300 град. при сварке, термообработка после сварки – отжиг |
Сталь 45: характеристики, свойства, аналоги
Сталь45 относится к наиболее востребованным и популярным типам конструкционной углеродистой стали. Соответствует ГОСТ 1050-2013 и ДСТУ 7809 норм
.Классификация: Высококачественная конструкционная углеродистая сталь.
Продукция: Прокат, в том числе фасонный.
Химический состав стали 45 по ДСТУ 7809%
Si | млн | пол | Ni | Кр | ю | Cu | Как | Fe | |
0.17-0,37 | 0,5-0,8 | <0,035 | <0,25 | <0,25 | <0,04 | <0,25 | <0,08 | ~ 97 |
Механические свойства стали 45 после нормализации
Стандартный | Состояние поставки | Предел ползучести, Rm (МПа) | Кратковременная прочность на разрыв ReH (МПа) | Минимальный коэффициент удлинения σ,% | Степень сжатия,% |
ГОСТ 1050 | Пост-нормализация | 355 | 600 | 16 | 40 |
ДСТУ 7809 | Пост-нормализация | 355 | 600 | 16 | 40 |
Аналоги стали 45
США | 1044, 1045, 1045H, G10420, G10430, G10440, G10450, M1044 |
Германия | 1.0503, 1.1191, 1.1193, C45, C45E, C45R, Cf45, Ck45, Cm45, Cq45 |
Япония | S45C, S48C, SWRCh55K, SWRCh58K |
Франция | 1C45, 2C45, AF65, C40E, C45, C45E, C45RR, CC45, XC42h2, XC42h2TS, XC45, XC45h2, XC48, XC48h2 |
Великобритания | 060A47, 080M, 080M46, 1449-50CS, 1449-50HS, 50HS, C45, C45E |
ЕС | 1.1191, 2C45, C45, C45E, C45EC, C46 |
Италия | 1C45, C43, C45, C45E, C45R, C46 |
Бельгия | C45-1, C45-2, C46 |
Испания | C45, C45E, C45k, C48k, F.114, F.1140, F.1142 |
Китай | 45, 45H, ML45, SM45, ZG310-570, ZGD345-570 |
Швеция | 1650, 1672 |
Болгария | 45, C45, C45E |
Венгрия | A3, C45E |
Польша | 45 |
Румыния | OLC45, OLC45q, OLC45X |
Чешская Республика | 12050, 12056 |
Австралия | 1045, HK1042, K1042 |
Австрия | C45SW |
Южная Корея | SM45C, SM48C |
Приложение
Сталь45 используется в производстве горячекатаного и холоднокатаного плоского и проката, а также поковок, которые затем используются в металлических конструкциях и компонентах машиностроения различных форм и размеров.Конструкционная сталь 45 находит широкое применение в шпинделях, кулачках, зубчатых колесах, креплениях и различных типах осей. Эта сталь используется для изготовления жизненно важных компонентов (консольных конструкций, валов, стержней, балок, плунжеров и т. Д.), Которые подвергаются термообработке для повышения их прочности.
Сварка
Сталь45 трудно сваривать. Для получения качественного сварного шва изделие перед сваркой необходимо нагреть до + 200-300 ° С, после чего подвергнуть термообработке (отжигу).
Свойства стального материала — SteelConstruction.info
Свойства конструкционной стали зависят как от ее химического состава, так и от способа производства, включая обработку во время изготовления. Стандарты продукции определяют пределы для состава, качества и производительности, и эти ограничения используются или предполагаются проектировщиками конструкций. В этой статье рассматриваются основные свойства, представляющие интерес для дизайнера, и указываются соответствующие стандарты для конкретных продуктов. Спецификация металлоконструкций рассматривается в отдельной статье.
Схематическая диаграмма напряжения / деформации для стали
[вверх] Свойства материала, необходимые для конструкции
Свойства, которые необходимо учитывать проектировщикам при выборе изделий из стальных конструкций:
Для проектирования механические свойства основаны на минимальных значениях, указанных в соответствующем стандарте на продукцию. Свариваемость определяется химическим составом сплава, который регулируется стандартами на продукцию.Прочность зависит от конкретного типа сплава — обычная углеродистая сталь, атмосферостойкая сталь или нержавеющая сталь.
[вверх] Факторы, влияющие на механические свойства
Стальприобретает свои механические свойства благодаря сочетанию химического состава, термической обработки и производственных процессов. Хотя основной составляющей стали является железо, добавление очень небольших количеств других элементов может существенно повлиять на свойства стали. Прочность стали можно повысить, добавив такие сплавы, как марганец, ниобий и ванадий.Однако эти добавки в сплав также могут отрицательно повлиять на другие свойства, такие как пластичность, ударная вязкость и свариваемость.
Сведение к минимуму уровня серы может повысить пластичность, а ударную вязкость можно улучшить добавлением никеля. Поэтому химический состав для каждой спецификации стали тщательно сбалансирован и протестирован во время ее производства, чтобы гарантировать достижение соответствующих свойств.
Легирующие элементы также по-разному реагируют, когда материал подвергается термообработке, включающей охлаждение с заданной скоростью от определенной пиковой температуры.Производственный процесс может включать комбинации термической обработки и механической обработки, которые имеют решающее значение для характеристик стали.
Механическая обработка осуществляется во время прокатки или формовки стали. Чем больше прокатывается стали, тем прочнее она становится. Этот эффект очевиден в стандартах на материалы, которые, как правило, указывают на снижение предела текучести с увеличением толщины материала.
Эффект термической обработки лучше всего объясняется с помощью различных маршрутов производственного процесса, которые могут использоваться при производстве стали, основными из которых являются:
- Сталь после прокатки
- Сталь нормализованная
- Сталь нормализованный прокат
- Сталь термомеханически прокатанная (TMR)
- Закаленная и отпущенная (Q&T) сталь.
Сталь охлаждается во время прокатки, при этом типичная температура окончательной прокатки составляет около 750 ° C. Сталь, которой затем дают остыть естественным путем, называется материалом «после прокатки». Нормализация происходит, когда прокатанный материал снова нагревают примерно до 900 ° C и выдерживают при этой температуре в течение определенного времени, прежде чем дать ему возможность естественным образом остыть. Этот процесс уменьшает размер зерна и улучшает механические свойства, особенно ударную вязкость. Нормализованная прокатка — это процесс, при котором после завершения прокатки температура превышает 900 ° C.Это оказывает такое же влияние на свойства, как и нормализация, но исключает дополнительный процесс повторного нагрева материала. Нормализованные и нормализованные прокатные стали имеют обозначение «N».
Использование высокопрочной стали может уменьшить объем необходимой стали, но сталь должна быть прочной при рабочих температурах, а также должна обладать достаточной пластичностью, чтобы противостоять любому распространению вязких трещин. Следовательно, стали с более высокой прочностью требуют улучшенной ударной вязкости и пластичности, которые могут быть достигнуты только с использованием низкоуглеродистых чистых сталей и за счет максимального измельчения зерна.Реализация процесса термомеханической прокатки (TMR) является эффективным способом достижения этой цели.
Термомеханически прокатанная сталь использует особый химический состав стали, что обеспечивает более низкую конечную температуру прокатки около 700 ° C. Для прокатки стали при этих более низких температурах требуется большее усилие, и свойства сохраняются, если повторно не нагреть сталь выше 650 ° C. Сталь, подвергнутая термомеханическому прокату, имеет маркировку «М».
Процесс обработки закаленной и отпущенной стали начинается с нормализованного материала при температуре 900 ° C.Он быстро охлаждается или закаливается для производства стали с высокой прочностью и твердостью, но с низкой вязкостью. Прочность восстанавливается повторным нагревом до 600 ° C, поддержанием температуры в течение определенного времени и затем естественным охлаждением (темперирование). Закаленная и отпущенная сталь обозначается буквой Q.
Закалка включает быстрое охлаждение продукта путем погружения непосредственно в воду или масло. Его часто используют в сочетании с отпуском, который представляет собой термообработку на второй стадии до температур ниже диапазона аустенизации.Эффект отпуска заключается в смягчении ранее затвердевших структур и их повышении прочности и пластичности.
Схематический график температуры / времени процессов прокатки
[наверх] Прочность
[вверху] Предел текучести
Предел текучести — это наиболее распространенное свойство, которое может понадобиться проектировщику, поскольку это основа, используемая для большинства правил, приведенных в нормах проектирования. В европейских стандартах для конструкционных углеродистых сталей (включая погодостойкую сталь) основное обозначение относится к пределу текучести, т.е.грамм. Сталь S355 — это конструкционная сталь с указанным минимальным пределом текучести 355 Н / мм².
Стандарты на продукцию также определяют допустимый диапазон значений предела прочности на разрыв (UTS). Минимальный UTS имеет отношение к некоторым аспектам дизайна.
[вверх] Горячекатаный прокат
Для горячекатаных углеродистых сталей цифра в обозначении представляет собой значение предела текучести для материала толщиной до 16 мм. Разработчики должны учитывать, что предел текучести уменьшается с увеличением толщины листа или профиля (более тонкий материал обрабатывается больше, чем толстый материал, и обработка увеличивает прочность).Для двух наиболее распространенных марок стали, используемых в Великобритании, указанные минимальный предел текучести и минимальный предел прочности на растяжение показаны в таблице ниже для сталей в соответствии с BS EN 10025-2 [1] .
Марка | Предел текучести (Н / мм 2 ) для номинальной толщины t (мм) | Предел прочности на разрыв (Н / мм 2 ) для номинальной толщины t (мм) | ||||
---|---|---|---|---|---|---|
т ≤ 16 | 16 | 40 | 63 | 3 | 100 | |
S275 | 275 | 265 | 255 | 245 | 410 | 400 |
S355 | 355 | 345 | 335 | 325 | 470 | 450 |
Национальное приложение Великобритании к BS EN 1993-1-1 [2] позволяет использовать минимальное значение текучести для конкретной толщины в качестве номинального (характеристического) предела текучести f y и минимального значения прочности на растяжение. прочность f u использовать как номинальный (характеристический) предел прочности.
Подобные значения даны для других марок в других частях BS EN 10025 и для полых профилей в соответствии с BS EN 10210-1 [3] .
[вверх] Холодногнутые стали
Существует широкий спектр марок стали для полосовой стали, пригодной для холодной штамповки. Минимальные значения предела текучести и предела прочности указаны в соответствующем стандарте на продукцию BS EN 10346 [4] .
BS EN 1993-1-3 [5] содержит значения базового предела текучести f yb и предела прочности на растяжение f u , которые должны использоваться в качестве характерных значений при проектировании.
[вверх] Нержавеющая сталь
Марки нержавеющей стали обозначаются числовым «номером стали» (например, 1.4401 для типичной аустенитной стали), а не системой обозначений «S» для углеродистых сталей. Зависимость напряжения от деформации не имеет четкого различия между пределом текучести, и «предел текучести» нержавеющей стали для нержавеющей стали обычно указывается в терминах предела текучести, определенного для конкретной постоянной деформации смещения (обычно 0,2% деформации).
Прочность обычно используемых конструкционных нержавеющих сталей составляет от 170 до 450 Н / мм². Аустенитные стали имеют более низкий предел текучести, чем обычно используемые углеродистые стали; Дуплексные стали имеют более высокий предел текучести, чем обычные углеродистые стали. Как для аустенитных, так и для дуплексных нержавеющих сталей отношение предела прочности к пределу текучести больше, чем для углеродистых сталей.
BS EN 1993-1-4 [6] содержит в таблице номинальные (характеристические) значения предела текучести f y и минимального предела прочности на растяжение f u для сталей согласно BS EN 10088-1 [7] для использование в дизайне.
[вверх] Прочность
Образец для испытаний на удар с V-образным надрезом
Все материалы имеют недостатки. В стали эти дефекты принимают форму очень мелких трещин. Если сталь недостаточно прочная, «трещина» может быстро распространяться без пластической деформации и привести к «хрупкому разрушению». Риск хрупкого разрушения увеличивается с увеличением толщины, растягивающего напряжения, концентраторов напряжений и более низких температур.Вязкость стали и ее способность противостоять хрупкому разрушению зависят от ряда факторов, которые следует учитывать на этапе спецификации. Удобной мерой прочности является испытание на удар по Шарпи с V-образным надрезом — см. Изображение справа. В этом испытании измеряется энергия удара, необходимая для разрушения небольшого образца с надрезом при заданной температуре одним ударом маятника.
В различных стандартах на продукцию указываются минимальные значения энергии удара для различных классов прочности каждого класса прочности.Для нелегированных конструкционных сталей основными обозначениями марок стали JR, J0, J2 и K2. Для мелкозернистых сталей, закаленных и отпущенных сталей (которые обычно более жесткие, с более высокой энергией удара) используются разные обозначения. Сводка обозначений ударной вязкости приведена в таблице ниже.
Стандартный | Земляное полотно | Ударная вязкость | Температура испытания |
---|---|---|---|
BS EN 10025-2 [1] BS EN 10210-1 [3] | JR | 27J | 20 o С |
J0 | 27J | 0 o С | |
J2 | 27J | -20 o С | |
К2 | 40J | -20 o С | |
BS EN 10025-3 [8] | N | 40J | -20 o с |
NL | 27J | -50 o с | |
BS EN 10025-4 [9] | M | 40J | -20 o с |
мл | 27J | -50 o с | |
BS EN 10025-5 [10] | J0 | 27J | 0 o С |
J2 | 27J | -20 o С | |
К2 | 40J | -20 o С | |
J4 | 27J | -40 o С | |
J5 | 27J | -50 o С | |
BS EN 10025-6 [11] | Q | 30J | -20 o с |
QL | 30J | -40 o с | |
QL1 | 30J | -60 o с |
Для тонкостенных сталей, предназначенных для холодной штамповки, требования к энергии удара для материала толщиной менее 6 мм не предъявляются.
Выбор подходящего подкласса для обеспечения соответствующей прочности в расчетных ситуациях приведен в BS EN 1993‑1‑10 [12] и связанном с ним UK NA [13] . Правила связывают температуру воздействия, уровень напряжений и т. Д. С «предельной толщиной» для каждого подкласса стали. PD 6695-1-10 [14] содержит полезные справочные таблицы, а руководство по выбору подходящего подкласса дано в ED007.
Эти правила проектирования были разработаны для конструкций, подверженных усталости, таких как мосты и опорные конструкции кранов, и признано, что их использование в зданиях, где усталость играет второстепенную роль, является чрезвычайно безопасным.
Публикация SCI P419 представляет модифицированные пределы толщины стали, которые могут использоваться в зданиях, где усталость не является соображением при проектировании. Эти новые пределы были получены с использованием того же подхода, что и правила проектирования Еврокода, но существенно снижают рост трещин из-за усталости. Используется слово «уменьшить», поскольку предполагать, что никакого роста вообще нет, означало бы полностью устранить эффект утомления. Допускается некоторая усталость (20 000 циклов) на основании ориентировочных указаний стандарта DIN.
Термин «квазистатический» будет охватывать такие конструкции — в действительности, может иметь место некоторая ограниченная цикличность нагрузки, но это обычно не рассматривается — подход к проектированию состоит в том, чтобы рассматривать все нагрузки как статические. Ключом к новому подходу является формула для выражения роста трещины за период до 20 000 циклов. Эксперты из Ахенского университета (которые участвовали в разработке Еврокода) дали это важнейшее выражение.
Дополнительная информация доступна в технической статье в сентябрьском выпуске журнала NSC за 2017 год.
Нержавеющая сталь обычно намного прочнее углеродистой стали; минимальные значения указаны в BS EN 10088-4 [15] . BS EN 1993-1-4 [6] утверждает, что аустенитные и дуплексные стали достаточно вязкие и не подвержены хрупкому разрушению при рабочих температурах до -40 ° C.
[вверху] Пластичность
Пластичность — это мера степени, в которой материал может деформироваться или растягиваться между началом текучести и возможным разрушением под действием растягивающей нагрузки, как показано на рисунке ниже.Конструктор полагается на пластичность для ряда аспектов проектирования, включая перераспределение напряжений в предельном состоянии, конструкцию группы болтов, снижение риска распространения усталостной трещины и в производственных процессах сварки, гибки и правки. Различные стандарты для марок стали в приведенной выше таблице настаивают на минимальном значении пластичности, поэтому проектные допущения действительны, и если они указаны правильно, проектировщик может быть уверен в их адекватных характеристиках.
Напряжение — деформация стали
[вверх] Свариваемость
Приваривание ребер жесткости к большой сборной балке
(Изображение любезно предоставлено Mabey Bridge Ltd)
Все конструкционные стали в основном поддаются сварке. Однако сварка предполагает локальное плавление стали, которая впоследствии остывает.Охлаждение может быть довольно быстрым, потому что окружающий материал, например балка обеспечивает большой «теплоотвод», а сварной шов (и вводимое тепло) обычно относительно невелик. Это может привести к упрочнению «зоны термического влияния» (HAZ) и снижению ударной вязкости. Чем больше толщина материала, тем больше снижение ударной вязкости.
Склонность к охрупчиванию также зависит от легирующих элементов, главным образом, но не исключительно, от содержания углерода. Эту восприимчивость можно выразить как «эквивалентное значение углерода» (CEV), и различные стандарты продукции для углеродистой стали содержат выражения для определения этого значения.
BS EN 10025 [1] устанавливает обязательные пределы для CEV для всех покрываемых конструкционных стальных изделий, и это простая задача для тех, кто контролирует сварку, — гарантировать, что используемые спецификации процедуры сварки соответствуют соответствующей марке стали и CEV.
[вверх] Прочие механические свойства стали
Другие важные для проектировщика механические свойства конструкционной стали включают:
- Модуль упругости, E = 210 000 Н / мм²
- Модуль сдвига, G = E / [2 (1 + ν )] Н / мм², часто принимается равным 81 000 Н / мм²
- коэффициент Пуассона, ν = 0.3
- Коэффициент теплового расширения, α = 12 x 10 -6 / ° C (в диапазоне температур окружающей среды).
[вверху] Прочность
Нанесение защиты от коррозии на месте
(Изображение любезно предоставлено Hempel UK Ltd.)
Еще одним важным свойством является защита от коррозии. Хотя доступны специальные коррозионно-стойкие стали, они обычно не используются в строительстве.Исключением является погодостойкая сталь.
Наиболее распространенными способами защиты конструкционной стали от коррозии являются окраска или гальваника. Требуемый тип и степень защиты покрытия зависит от степени воздействия, местоположения, расчетного срока службы и т. Д. Во многих случаях во внутренних сухих условиях не требуется никаких антикоррозионных покрытий, кроме соответствующей противопожарной защиты. Доступна подробная информация о защите от коррозии конструкционной стали.
[вверх] Погодостойкая сталь
Атмосферостойкая сталь— это высокопрочная низколегированная сталь, которая противостоит коррозии, образуя прилипшую защитную «патину» от ржавчины, которая препятствует дальнейшей коррозии.Защитное покрытие не требуется. Он широко используется в Великобритании для строительства мостов и некоторых зданий. Он также используется для архитектурных элементов и скульптурных сооружений, таких как Ангел Севера.
Ангел Севера
[вверху] Нержавеющая сталь
Типичные кривые напряжение-деформация для нержавеющей и углеродистой стали в отожженном состоянии
Нержавеющая сталь — это материал с высокой коррозионной стойкостью, который можно использовать в конструкционных целях, особенно там, где требуется высококачественная обработка поверхности.Подходящие классы воздействия в типичных условиях окружающей среды приведены ниже.
Поведение нержавеющих сталей при растяжении отличается от углеродистых сталей по ряду аспектов. Наиболее важное различие заключается в форме кривой напряжения-деформации. В то время как углеродистая сталь обычно демонстрирует линейное упругое поведение вплоть до предела текучести и плато перед деформационным упрочнением, нержавеющая сталь имеет более округлую реакцию без четко определенного напряжения текучести. Следовательно, предел текучести нержавеющей стали обычно определяется для конкретной остаточной деформации смещения (обычно 0.2% деформации), как показано на рисунке справа, на котором показаны типичные экспериментальные кривые напряжение-деформация для обычных аустенитных и дуплексных нержавеющих сталей. Показанные кривые представляют диапазон материалов, которые могут быть поставлены, и не должны использоваться при проектировании.
Описание | Марка | Минимум 0.Предел текучести 2% (Н / мм 2 ) | Предел прочности на разрыв (Н / мм 2 ) | Относительное удлинение при разрыве (%) |
---|---|---|---|---|
Основные хромоникелевые аустенитные стали | 1.4301 | 210 | 520–720 | 45 |
1.4307 | 200 | 500–700 | 45 | |
Молибден-хромникелевые аустенитные стали | 1.4401 | 220 | 520–670 | 45 |
1.4404 | 220 | 520–670 | 45 | |
Дуплексные стали | 1,4162 | 450 | 650–850 | 30 |
1.4462 | 460 | 640–840 | 25 |
Механические свойства относятся к горячекатаному листу. Для холоднокатаной и горячекатаной полосы указанные значения прочности на 10-17% выше.
BS EN ISO 9223 [16] Класс атмосферной коррозии | Типичная внешняя среда | Подходящая нержавеющая сталь |
---|---|---|
C1 (Очень низкий) | Пустыни и арктические районы (очень низкая влажность) | 1.4301 / 1.4307, 1.4162 |
C2 (Низкий) | Засушливые или низкие уровни загрязнения (сельские районы) | 1.4301 / 1.4307, 1.4162 |
C3 (средний) | Прибрежные районы с небольшими отложениями соли Городские или промышленные районы с умеренным загрязнением | 1.4401 / 1.4404, 1.4162 (1.4301 / 1.4307) |
C4 (высокий) | Загрязненная городская и промышленная атмосфера Прибрежные районы с умеренными солевыми отложениями Дорожная среда с солями для защиты от обледенения | 1.4462, (1.4401 / 1.4404), другие более высоколегированные дуплексы или аустенитные материалы |
C5 (Очень высокий) | Сильно загрязненная промышленная среда с высокой влажностью Морская среда с высокой степенью солевых отложений и брызг | 1.4462, другие более высоколегированные дуплексы или аустенитные материалы |
Материалы, подходящие для более высокого класса, могут использоваться для более низких классов, но могут быть неэффективными с точки зрения затрат. Материалы в скобках могут быть рассмотрены, если допустима умеренная коррозия. Накопление коррозионных загрязнителей и хлоридов будет выше в защищенных местах; следовательно, может потребоваться выбрать рекомендуемый сорт из следующего более высокого класса коррозии.
[вверх] Список литературы
- ↑ 1.0 1,1 1,2 BS EN 10025-2: 2019 Горячекатаный прокат из конструкционных сталей. Технические условия поставки нелегированных конструкционных сталей, BSI.
- ↑ NA + A1: 2014 к BS EN 1993-1-1: 2005 + A1: 2014, Национальное приложение Великобритании к Еврокоду 3: Проектирование стальных конструкций Общие правила и правила для зданий, BSI
- ↑ 3,0 3,1 BS EN 10210-1: 2006 Конструкционные полые профили горячей обработки из нелегированных и мелкозернистых сталей. Технические требования к поставке, BSI.
- ↑ BS EN 10346: 2015 Стальной плоский прокат с непрерывным горячим покрытием для холодной штамповки. Технические условия поставки. BSI
- ↑ BS EN 1993-1-3: 2006 Еврокод 3: Проектирование стальных конструкций. Общие правила — Дополнительные правила для холодногнутых профилей и листов, BSI.
- ↑ 6,0 6,1 BS EN 1993-1-4: 2006 + A1: 2015 Еврокод 3. Проектирование стальных конструкций. Основные правила. Дополнительные правила для нержавеющих сталей, BSI
- ↑ BS EN 10088-1: 2014 Нержавеющие стали.Список нержавеющих сталей, BSI
- ↑ BS EN 10025-3: 2019, Горячекатаный прокат из конструкционных сталей, Часть 3: Технические условия поставки нормализованных / нормализованных прокатных свариваемых мелкозернистых конструкционных сталей, BSI
- ↑ BS EN 10025-4: 2019, Горячекатаный прокат из конструкционных сталей, Часть 4: Технические условия поставки термомеханических прокатных свариваемых мелкозернистых конструкционных сталей, BSI
- ↑ BS EN 10025-5: 2019, Горячекатаный прокат из конструкционных сталей, Часть 5: Технические условия поставки для конструкционных сталей с повышенной стойкостью к атмосферной коррозии, BSI
- ↑ BS EN 10025-6: 2019, Горячекатаный прокат из конструкционных сталей, Часть 6: Технические условия поставки плоского проката из конструкционных сталей с высоким пределом текучести в закаленном и отпущенном состоянии, BSI
- ↑ BS EN 1993-1-10: 2005 Еврокод 3.Проектирование металлоконструкций. Прочность материала и свойства по толщине, BSI.
- ↑ NA к BS EN 1993-1-10: 2005, Национальное приложение Великобритании к Еврокоду 3: Проектирование стальных конструкций. Прочность материала и свойства по толщине. BSI
- ↑ PD 6695-1-10: 2009 Рекомендации по проектированию конструкций согласно BS EN 1993-1-10. BSI
- ↑ 15,0 15,1 BS EN 10088-4: 2009 Нержавеющие стали. Технические условия поставки листов и полос из коррозионно-стойких сталей строительного назначения, BSI.
- ↑ BS EN ISO 9223: 2012 Коррозия металлов и сплавов, Коррозионная активность атмосферы, Классификация, определение и оценка. BSI
[вверх] Ресурсы
[вверху] См. Также
Свойства стального материала — SteelConstruction.info
Свойства конструкционной стали зависят как от ее химического состава, так и от метода производства, включая обработку во время изготовления. Стандарты продукции определяют пределы для состава, качества и производительности, и эти ограничения используются или предполагаются проектировщиками конструкций.В этой статье рассматриваются основные свойства, представляющие интерес для дизайнера, и указываются соответствующие стандарты для конкретных продуктов. Спецификация металлоконструкций рассматривается в отдельной статье.
Схематическая диаграмма напряжения / деформации для стали
[вверх] Свойства материала, необходимые для конструкции
Свойства, которые необходимо учитывать проектировщикам при выборе изделий из стальных конструкций:
Для проектирования механические свойства основаны на минимальных значениях, указанных в соответствующем стандарте на продукцию.Свариваемость определяется химическим составом сплава, который регулируется стандартами на продукцию. Прочность зависит от конкретного типа сплава — обычная углеродистая сталь, атмосферостойкая сталь или нержавеющая сталь.
[вверх] Факторы, влияющие на механические свойства
Стальприобретает свои механические свойства благодаря сочетанию химического состава, термической обработки и производственных процессов. Хотя основной составляющей стали является железо, добавление очень небольших количеств других элементов может существенно повлиять на свойства стали.Прочность стали можно повысить, добавив такие сплавы, как марганец, ниобий и ванадий. Однако эти добавки в сплав также могут отрицательно повлиять на другие свойства, такие как пластичность, ударная вязкость и свариваемость.
Сведение к минимуму уровня серы может повысить пластичность, а ударную вязкость можно улучшить добавлением никеля. Поэтому химический состав для каждой спецификации стали тщательно сбалансирован и протестирован во время ее производства, чтобы гарантировать достижение соответствующих свойств.
Легирующие элементы также по-разному реагируют, когда материал подвергается термообработке, включающей охлаждение с заданной скоростью от определенной пиковой температуры. Производственный процесс может включать комбинации термической обработки и механической обработки, которые имеют решающее значение для характеристик стали.
Механическая обработка осуществляется во время прокатки или формовки стали. Чем больше прокатывается стали, тем прочнее она становится. Этот эффект очевиден в стандартах на материалы, которые, как правило, указывают на снижение предела текучести с увеличением толщины материала.
Эффект термической обработки лучше всего объясняется с помощью различных маршрутов производственного процесса, которые могут использоваться при производстве стали, основными из которых являются:
- Сталь после прокатки
- Сталь нормализованная
- Сталь нормализованный прокат
- Сталь термомеханически прокатанная (TMR)
- Закаленная и отпущенная (Q&T) сталь.
Сталь охлаждается во время прокатки, при этом типичная температура окончательной прокатки составляет около 750 ° C.Сталь, которой затем дают остыть естественным путем, называется материалом «после прокатки». Нормализация происходит, когда прокатанный материал снова нагревают примерно до 900 ° C и выдерживают при этой температуре в течение определенного времени, прежде чем дать ему возможность естественным образом остыть. Этот процесс уменьшает размер зерна и улучшает механические свойства, особенно ударную вязкость. Нормализованная прокатка — это процесс, при котором после завершения прокатки температура превышает 900 ° C. Это оказывает такое же влияние на свойства, как и нормализация, но исключает дополнительный процесс повторного нагрева материала.Нормализованные и нормализованные прокатные стали имеют обозначение «N».
Использование высокопрочной стали может уменьшить объем необходимой стали, но сталь должна быть прочной при рабочих температурах, а также должна обладать достаточной пластичностью, чтобы противостоять любому распространению вязких трещин. Следовательно, стали с более высокой прочностью требуют улучшенной ударной вязкости и пластичности, которые могут быть достигнуты только с использованием низкоуглеродистых чистых сталей и за счет максимального измельчения зерна. Реализация процесса термомеханической прокатки (TMR) является эффективным способом достижения этой цели.
Термомеханически прокатанная сталь использует особый химический состав стали, что обеспечивает более низкую конечную температуру прокатки около 700 ° C. Для прокатки стали при этих более низких температурах требуется большее усилие, и свойства сохраняются, если повторно не нагреть сталь выше 650 ° C. Сталь, подвергнутая термомеханическому прокату, имеет маркировку «М».
Процесс обработки закаленной и отпущенной стали начинается с нормализованного материала при температуре 900 ° C. Он быстро охлаждается или закаливается для производства стали с высокой прочностью и твердостью, но с низкой вязкостью.Прочность восстанавливается повторным нагревом до 600 ° C, поддержанием температуры в течение определенного времени и затем естественным охлаждением (темперирование). Закаленная и отпущенная сталь обозначается буквой Q.
Закалка включает быстрое охлаждение продукта путем погружения непосредственно в воду или масло. Его часто используют в сочетании с отпуском, который представляет собой термообработку на второй стадии до температур ниже диапазона аустенизации. Эффект отпуска заключается в смягчении ранее затвердевших структур и их повышении прочности и пластичности.
Схематический график температуры / времени процессов прокатки
[наверх] Прочность
[вверху] Предел текучести
Предел текучести — это наиболее распространенное свойство, которое может понадобиться проектировщику, поскольку это основа, используемая для большинства правил, приведенных в нормах проектирования. В европейских стандартах для конструкционных углеродистых сталей (включая погодостойкую сталь) основное обозначение относится к пределу текучести, т.е.грамм. Сталь S355 — это конструкционная сталь с указанным минимальным пределом текучести 355 Н / мм².
Стандарты на продукцию также определяют допустимый диапазон значений предела прочности на разрыв (UTS). Минимальный UTS имеет отношение к некоторым аспектам дизайна.
[вверх] Горячекатаный прокат
Для горячекатаных углеродистых сталей цифра в обозначении представляет собой значение предела текучести для материала толщиной до 16 мм. Разработчики должны учитывать, что предел текучести уменьшается с увеличением толщины листа или профиля (более тонкий материал обрабатывается больше, чем толстый материал, и обработка увеличивает прочность).Для двух наиболее распространенных марок стали, используемых в Великобритании, указанные минимальный предел текучести и минимальный предел прочности на растяжение показаны в таблице ниже для сталей в соответствии с BS EN 10025-2 [1] .
Марка | Предел текучести (Н / мм 2 ) для номинальной толщины t (мм) | Предел прочности на разрыв (Н / мм 2 ) для номинальной толщины t (мм) | ||||
---|---|---|---|---|---|---|
т ≤ 16 | 16 | 40 | 63 | 3 | 100 | |
S275 | 275 | 265 | 255 | 245 | 410 | 400 |
S355 | 355 | 345 | 335 | 325 | 470 | 450 |
Национальное приложение Великобритании к BS EN 1993-1-1 [2] позволяет использовать минимальное значение текучести для конкретной толщины в качестве номинального (характеристического) предела текучести f y и минимального значения прочности на растяжение. прочность f u использовать как номинальный (характеристический) предел прочности.
Подобные значения даны для других марок в других частях BS EN 10025 и для полых профилей в соответствии с BS EN 10210-1 [3] .
[вверх] Холодногнутые стали
Существует широкий спектр марок стали для полосовой стали, пригодной для холодной штамповки. Минимальные значения предела текучести и предела прочности указаны в соответствующем стандарте на продукцию BS EN 10346 [4] .
BS EN 1993-1-3 [5] содержит значения базового предела текучести f yb и предела прочности на растяжение f u , которые должны использоваться в качестве характерных значений при проектировании.
[вверх] Нержавеющая сталь
Марки нержавеющей стали обозначаются числовым «номером стали» (например, 1.4401 для типичной аустенитной стали), а не системой обозначений «S» для углеродистых сталей. Зависимость напряжения от деформации не имеет четкого различия между пределом текучести, и «предел текучести» нержавеющей стали для нержавеющей стали обычно указывается в терминах предела текучести, определенного для конкретной постоянной деформации смещения (обычно 0,2% деформации).
Прочность обычно используемых конструкционных нержавеющих сталей составляет от 170 до 450 Н / мм². Аустенитные стали имеют более низкий предел текучести, чем обычно используемые углеродистые стали; Дуплексные стали имеют более высокий предел текучести, чем обычные углеродистые стали. Как для аустенитных, так и для дуплексных нержавеющих сталей отношение предела прочности к пределу текучести больше, чем для углеродистых сталей.
BS EN 1993-1-4 [6] содержит в таблице номинальные (характеристические) значения предела текучести f y и минимального предела прочности на растяжение f u для сталей согласно BS EN 10088-1 [7] для использование в дизайне.
[вверх] Прочность
Образец для испытаний на удар с V-образным надрезом
Все материалы имеют недостатки. В стали эти дефекты принимают форму очень мелких трещин. Если сталь недостаточно прочная, «трещина» может быстро распространяться без пластической деформации и привести к «хрупкому разрушению». Риск хрупкого разрушения увеличивается с увеличением толщины, растягивающего напряжения, концентраторов напряжений и более низких температур.Вязкость стали и ее способность противостоять хрупкому разрушению зависят от ряда факторов, которые следует учитывать на этапе спецификации. Удобной мерой прочности является испытание на удар по Шарпи с V-образным надрезом — см. Изображение справа. В этом испытании измеряется энергия удара, необходимая для разрушения небольшого образца с надрезом при заданной температуре одним ударом маятника.
В различных стандартах на продукцию указываются минимальные значения энергии удара для различных классов прочности каждого класса прочности.Для нелегированных конструкционных сталей основными обозначениями марок стали JR, J0, J2 и K2. Для мелкозернистых сталей, закаленных и отпущенных сталей (которые обычно более жесткие, с более высокой энергией удара) используются разные обозначения. Сводка обозначений ударной вязкости приведена в таблице ниже.
Стандартный | Земляное полотно | Ударная вязкость | Температура испытания |
---|---|---|---|
BS EN 10025-2 [1] BS EN 10210-1 [3] | JR | 27J | 20 o С |
J0 | 27J | 0 o С | |
J2 | 27J | -20 o С | |
К2 | 40J | -20 o С | |
BS EN 10025-3 [8] | N | 40J | -20 o с |
NL | 27J | -50 o с | |
BS EN 10025-4 [9] | M | 40J | -20 o с |
мл | 27J | -50 o с | |
BS EN 10025-5 [10] | J0 | 27J | 0 o С |
J2 | 27J | -20 o С | |
К2 | 40J | -20 o С | |
J4 | 27J | -40 o С | |
J5 | 27J | -50 o С | |
BS EN 10025-6 [11] | Q | 30J | -20 o с |
QL | 30J | -40 o с | |
QL1 | 30J | -60 o с |
Для тонкостенных сталей, предназначенных для холодной штамповки, требования к энергии удара для материала толщиной менее 6 мм не предъявляются.
Выбор подходящего подкласса для обеспечения соответствующей прочности в расчетных ситуациях приведен в BS EN 1993‑1‑10 [12] и связанном с ним UK NA [13] . Правила связывают температуру воздействия, уровень напряжений и т. Д. С «предельной толщиной» для каждого подкласса стали. PD 6695-1-10 [14] содержит полезные справочные таблицы, а руководство по выбору подходящего подкласса дано в ED007.
Эти правила проектирования были разработаны для конструкций, подверженных усталости, таких как мосты и опорные конструкции кранов, и признано, что их использование в зданиях, где усталость играет второстепенную роль, является чрезвычайно безопасным.
Публикация SCI P419 представляет модифицированные пределы толщины стали, которые могут использоваться в зданиях, где усталость не является соображением при проектировании. Эти новые пределы были получены с использованием того же подхода, что и правила проектирования Еврокода, но существенно снижают рост трещин из-за усталости. Используется слово «уменьшить», поскольку предполагать, что никакого роста вообще нет, означало бы полностью устранить эффект утомления. Допускается некоторая усталость (20 000 циклов) на основании ориентировочных указаний стандарта DIN.
Термин «квазистатический» будет охватывать такие конструкции — в действительности, может иметь место некоторая ограниченная цикличность нагрузки, но это обычно не рассматривается — подход к проектированию состоит в том, чтобы рассматривать все нагрузки как статические. Ключом к новому подходу является формула для выражения роста трещины за период до 20 000 циклов. Эксперты из Ахенского университета (которые участвовали в разработке Еврокода) дали это важнейшее выражение.
Дополнительная информация доступна в технической статье в сентябрьском выпуске журнала NSC за 2017 год.
Нержавеющая сталь обычно намного прочнее углеродистой стали; минимальные значения указаны в BS EN 10088-4 [15] . BS EN 1993-1-4 [6] утверждает, что аустенитные и дуплексные стали достаточно вязкие и не подвержены хрупкому разрушению при рабочих температурах до -40 ° C.
[вверху] Пластичность
Пластичность — это мера степени, в которой материал может деформироваться или растягиваться между началом текучести и возможным разрушением под действием растягивающей нагрузки, как показано на рисунке ниже.Конструктор полагается на пластичность для ряда аспектов проектирования, включая перераспределение напряжений в предельном состоянии, конструкцию группы болтов, снижение риска распространения усталостной трещины и в производственных процессах сварки, гибки и правки. Различные стандарты для марок стали в приведенной выше таблице настаивают на минимальном значении пластичности, поэтому проектные допущения действительны, и если они указаны правильно, проектировщик может быть уверен в их адекватных характеристиках.
Напряжение — деформация стали
[вверх] Свариваемость
Приваривание ребер жесткости к большой сборной балке
(Изображение любезно предоставлено Mabey Bridge Ltd)
Все конструкционные стали в основном поддаются сварке. Однако сварка предполагает локальное плавление стали, которая впоследствии остывает.Охлаждение может быть довольно быстрым, потому что окружающий материал, например балка обеспечивает большой «теплоотвод», а сварной шов (и вводимое тепло) обычно относительно невелик. Это может привести к упрочнению «зоны термического влияния» (HAZ) и снижению ударной вязкости. Чем больше толщина материала, тем больше снижение ударной вязкости.
Склонность к охрупчиванию также зависит от легирующих элементов, главным образом, но не исключительно, от содержания углерода. Эту восприимчивость можно выразить как «эквивалентное значение углерода» (CEV), и различные стандарты продукции для углеродистой стали содержат выражения для определения этого значения.
BS EN 10025 [1] устанавливает обязательные пределы для CEV для всех покрываемых конструкционных стальных изделий, и это простая задача для тех, кто контролирует сварку, — гарантировать, что используемые спецификации процедуры сварки соответствуют соответствующей марке стали и CEV.
[вверх] Прочие механические свойства стали
Другие важные для проектировщика механические свойства конструкционной стали включают:
- Модуль упругости, E = 210 000 Н / мм²
- Модуль сдвига, G = E / [2 (1 + ν )] Н / мм², часто принимается равным 81 000 Н / мм²
- коэффициент Пуассона, ν = 0.3
- Коэффициент теплового расширения, α = 12 x 10 -6 / ° C (в диапазоне температур окружающей среды).
[вверху] Прочность
Нанесение защиты от коррозии на месте
(Изображение любезно предоставлено Hempel UK Ltd.)
Еще одним важным свойством является защита от коррозии. Хотя доступны специальные коррозионно-стойкие стали, они обычно не используются в строительстве.Исключением является погодостойкая сталь.
Наиболее распространенными способами защиты конструкционной стали от коррозии являются окраска или гальваника. Требуемый тип и степень защиты покрытия зависит от степени воздействия, местоположения, расчетного срока службы и т. Д. Во многих случаях во внутренних сухих условиях не требуется никаких антикоррозионных покрытий, кроме соответствующей противопожарной защиты. Доступна подробная информация о защите от коррозии конструкционной стали.
[вверх] Погодостойкая сталь
Атмосферостойкая сталь— это высокопрочная низколегированная сталь, которая противостоит коррозии, образуя прилипшую защитную «патину» от ржавчины, которая препятствует дальнейшей коррозии.Защитное покрытие не требуется. Он широко используется в Великобритании для строительства мостов и некоторых зданий. Он также используется для архитектурных элементов и скульптурных сооружений, таких как Ангел Севера.
Ангел Севера
[вверху] Нержавеющая сталь
Типичные кривые напряжение-деформация для нержавеющей и углеродистой стали в отожженном состоянии
Нержавеющая сталь — это материал с высокой коррозионной стойкостью, который можно использовать в конструкционных целях, особенно там, где требуется высококачественная обработка поверхности.Подходящие классы воздействия в типичных условиях окружающей среды приведены ниже.
Поведение нержавеющих сталей при растяжении отличается от углеродистых сталей по ряду аспектов. Наиболее важное различие заключается в форме кривой напряжения-деформации. В то время как углеродистая сталь обычно демонстрирует линейное упругое поведение вплоть до предела текучести и плато перед деформационным упрочнением, нержавеющая сталь имеет более округлую реакцию без четко определенного напряжения текучести. Следовательно, предел текучести нержавеющей стали обычно определяется для конкретной остаточной деформации смещения (обычно 0.2% деформации), как показано на рисунке справа, на котором показаны типичные экспериментальные кривые напряжение-деформация для обычных аустенитных и дуплексных нержавеющих сталей. Показанные кривые представляют диапазон материалов, которые могут быть поставлены, и не должны использоваться при проектировании.
Описание | Марка | Минимум 0.Предел текучести 2% (Н / мм 2 ) | Предел прочности на разрыв (Н / мм 2 ) | Относительное удлинение при разрыве (%) |
---|---|---|---|---|
Основные хромоникелевые аустенитные стали | 1.4301 | 210 | 520–720 | 45 |
1.4307 | 200 | 500–700 | 45 | |
Молибден-хромникелевые аустенитные стали | 1.4401 | 220 | 520–670 | 45 |
1.4404 | 220 | 520–670 | 45 | |
Дуплексные стали | 1,4162 | 450 | 650–850 | 30 |
1.4462 | 460 | 640–840 | 25 |
Механические свойства относятся к горячекатаному листу. Для холоднокатаной и горячекатаной полосы указанные значения прочности на 10-17% выше.
BS EN ISO 9223 [16] Класс атмосферной коррозии | Типичная внешняя среда | Подходящая нержавеющая сталь |
---|---|---|
C1 (Очень низкий) | Пустыни и арктические районы (очень низкая влажность) | 1.4301 / 1.4307, 1.4162 |
C2 (Низкий) | Засушливые или низкие уровни загрязнения (сельские районы) | 1.4301 / 1.4307, 1.4162 |
C3 (средний) | Прибрежные районы с небольшими отложениями соли Городские или промышленные районы с умеренным загрязнением | 1.4401 / 1.4404, 1.4162 (1.4301 / 1.4307) |
C4 (высокий) | Загрязненная городская и промышленная атмосфера Прибрежные районы с умеренными солевыми отложениями Дорожная среда с солями для защиты от обледенения | 1.4462, (1.4401 / 1.4404), другие более высоколегированные дуплексы или аустенитные материалы |
C5 (Очень высокий) | Сильно загрязненная промышленная среда с высокой влажностью Морская среда с высокой степенью солевых отложений и брызг | 1.4462, другие более высоколегированные дуплексы или аустенитные материалы |
Материалы, подходящие для более высокого класса, могут использоваться для более низких классов, но могут быть неэффективными с точки зрения затрат. Материалы в скобках могут быть рассмотрены, если допустима умеренная коррозия. Накопление коррозионных загрязнителей и хлоридов будет выше в защищенных местах; следовательно, может потребоваться выбрать рекомендуемый сорт из следующего более высокого класса коррозии.
[вверх] Список литературы
- ↑ 1.0 1,1 1,2 BS EN 10025-2: 2019 Горячекатаный прокат из конструкционных сталей. Технические условия поставки нелегированных конструкционных сталей, BSI.
- ↑ NA + A1: 2014 к BS EN 1993-1-1: 2005 + A1: 2014, Национальное приложение Великобритании к Еврокоду 3: Проектирование стальных конструкций Общие правила и правила для зданий, BSI
- ↑ 3,0 3,1 BS EN 10210-1: 2006 Конструкционные полые профили горячей обработки из нелегированных и мелкозернистых сталей. Технические требования к поставке, BSI.
- ↑ BS EN 10346: 2015 Стальной плоский прокат с непрерывным горячим покрытием для холодной штамповки. Технические условия поставки. BSI
- ↑ BS EN 1993-1-3: 2006 Еврокод 3: Проектирование стальных конструкций. Общие правила — Дополнительные правила для холодногнутых профилей и листов, BSI.
- ↑ 6,0 6,1 BS EN 1993-1-4: 2006 + A1: 2015 Еврокод 3. Проектирование стальных конструкций. Основные правила. Дополнительные правила для нержавеющих сталей, BSI
- ↑ BS EN 10088-1: 2014 Нержавеющие стали.Список нержавеющих сталей, BSI
- ↑ BS EN 10025-3: 2019, Горячекатаный прокат из конструкционных сталей, Часть 3: Технические условия поставки нормализованных / нормализованных прокатных свариваемых мелкозернистых конструкционных сталей, BSI
- ↑ BS EN 10025-4: 2019, Горячекатаный прокат из конструкционных сталей, Часть 4: Технические условия поставки термомеханических прокатных свариваемых мелкозернистых конструкционных сталей, BSI
- ↑ BS EN 10025-5: 2019, Горячекатаный прокат из конструкционных сталей, Часть 5: Технические условия поставки для конструкционных сталей с повышенной стойкостью к атмосферной коррозии, BSI
- ↑ BS EN 10025-6: 2019, Горячекатаный прокат из конструкционных сталей, Часть 6: Технические условия поставки плоского проката из конструкционных сталей с высоким пределом текучести в закаленном и отпущенном состоянии, BSI
- ↑ BS EN 1993-1-10: 2005 Еврокод 3.Проектирование металлоконструкций. Прочность материала и свойства по толщине, BSI.
- ↑ NA к BS EN 1993-1-10: 2005, Национальное приложение Великобритании к Еврокоду 3: Проектирование стальных конструкций. Прочность материала и свойства по толщине. BSI
- ↑ PD 6695-1-10: 2009 Рекомендации по проектированию конструкций согласно BS EN 1993-1-10. BSI
- ↑ 15,0 15,1 BS EN 10088-4: 2009 Нержавеющие стали. Технические условия поставки листов и полос из коррозионно-стойких сталей строительного назначения, BSI.
- ↑ BS EN ISO 9223: 2012 Коррозия металлов и сплавов, Коррозионная активность атмосферы, Классификация, определение и оценка. BSI
[вверх] Ресурсы
[вверху] См. Также
Свойства стального материала — SteelConstruction.info
Свойства конструкционной стали зависят как от ее химического состава, так и от метода производства, включая обработку во время изготовления. Стандарты продукции определяют пределы для состава, качества и производительности, и эти ограничения используются или предполагаются проектировщиками конструкций.В этой статье рассматриваются основные свойства, представляющие интерес для дизайнера, и указываются соответствующие стандарты для конкретных продуктов. Спецификация металлоконструкций рассматривается в отдельной статье.
Схематическая диаграмма напряжения / деформации для стали
[вверх] Свойства материала, необходимые для конструкции
Свойства, которые необходимо учитывать проектировщикам при выборе изделий из стальных конструкций:
Для проектирования механические свойства основаны на минимальных значениях, указанных в соответствующем стандарте на продукцию.Свариваемость определяется химическим составом сплава, который регулируется стандартами на продукцию. Прочность зависит от конкретного типа сплава — обычная углеродистая сталь, атмосферостойкая сталь или нержавеющая сталь.
[вверх] Факторы, влияющие на механические свойства
Стальприобретает свои механические свойства благодаря сочетанию химического состава, термической обработки и производственных процессов. Хотя основной составляющей стали является железо, добавление очень небольших количеств других элементов может существенно повлиять на свойства стали.Прочность стали можно повысить, добавив такие сплавы, как марганец, ниобий и ванадий. Однако эти добавки в сплав также могут отрицательно повлиять на другие свойства, такие как пластичность, ударная вязкость и свариваемость.
Сведение к минимуму уровня серы может повысить пластичность, а ударную вязкость можно улучшить добавлением никеля. Поэтому химический состав для каждой спецификации стали тщательно сбалансирован и протестирован во время ее производства, чтобы гарантировать достижение соответствующих свойств.
Легирующие элементы также по-разному реагируют, когда материал подвергается термообработке, включающей охлаждение с заданной скоростью от определенной пиковой температуры. Производственный процесс может включать комбинации термической обработки и механической обработки, которые имеют решающее значение для характеристик стали.
Механическая обработка осуществляется во время прокатки или формовки стали. Чем больше прокатывается стали, тем прочнее она становится. Этот эффект очевиден в стандартах на материалы, которые, как правило, указывают на снижение предела текучести с увеличением толщины материала.
Эффект термической обработки лучше всего объясняется с помощью различных маршрутов производственного процесса, которые могут использоваться при производстве стали, основными из которых являются:
- Сталь после прокатки
- Сталь нормализованная
- Сталь нормализованный прокат
- Сталь термомеханически прокатанная (TMR)
- Закаленная и отпущенная (Q&T) сталь.
Сталь охлаждается во время прокатки, при этом типичная температура окончательной прокатки составляет около 750 ° C.Сталь, которой затем дают остыть естественным путем, называется материалом «после прокатки». Нормализация происходит, когда прокатанный материал снова нагревают примерно до 900 ° C и выдерживают при этой температуре в течение определенного времени, прежде чем дать ему возможность естественным образом остыть. Этот процесс уменьшает размер зерна и улучшает механические свойства, особенно ударную вязкость. Нормализованная прокатка — это процесс, при котором после завершения прокатки температура превышает 900 ° C. Это оказывает такое же влияние на свойства, как и нормализация, но исключает дополнительный процесс повторного нагрева материала.Нормализованные и нормализованные прокатные стали имеют обозначение «N».
Использование высокопрочной стали может уменьшить объем необходимой стали, но сталь должна быть прочной при рабочих температурах, а также должна обладать достаточной пластичностью, чтобы противостоять любому распространению вязких трещин. Следовательно, стали с более высокой прочностью требуют улучшенной ударной вязкости и пластичности, которые могут быть достигнуты только с использованием низкоуглеродистых чистых сталей и за счет максимального измельчения зерна. Реализация процесса термомеханической прокатки (TMR) является эффективным способом достижения этой цели.
Термомеханически прокатанная сталь использует особый химический состав стали, что обеспечивает более низкую конечную температуру прокатки около 700 ° C. Для прокатки стали при этих более низких температурах требуется большее усилие, и свойства сохраняются, если повторно не нагреть сталь выше 650 ° C. Сталь, подвергнутая термомеханическому прокату, имеет маркировку «М».
Процесс обработки закаленной и отпущенной стали начинается с нормализованного материала при температуре 900 ° C. Он быстро охлаждается или закаливается для производства стали с высокой прочностью и твердостью, но с низкой вязкостью.Прочность восстанавливается повторным нагревом до 600 ° C, поддержанием температуры в течение определенного времени и затем естественным охлаждением (темперирование). Закаленная и отпущенная сталь обозначается буквой Q.
Закалка включает быстрое охлаждение продукта путем погружения непосредственно в воду или масло. Его часто используют в сочетании с отпуском, который представляет собой термообработку на второй стадии до температур ниже диапазона аустенизации. Эффект отпуска заключается в смягчении ранее затвердевших структур и их повышении прочности и пластичности.
Схематический график температуры / времени процессов прокатки
[наверх] Прочность
[вверху] Предел текучести
Предел текучести — это наиболее распространенное свойство, которое может понадобиться проектировщику, поскольку это основа, используемая для большинства правил, приведенных в нормах проектирования. В европейских стандартах для конструкционных углеродистых сталей (включая погодостойкую сталь) основное обозначение относится к пределу текучести, т.е.грамм. Сталь S355 — это конструкционная сталь с указанным минимальным пределом текучести 355 Н / мм².
Стандарты на продукцию также определяют допустимый диапазон значений предела прочности на разрыв (UTS). Минимальный UTS имеет отношение к некоторым аспектам дизайна.
[вверх] Горячекатаный прокат
Для горячекатаных углеродистых сталей цифра в обозначении представляет собой значение предела текучести для материала толщиной до 16 мм. Разработчики должны учитывать, что предел текучести уменьшается с увеличением толщины листа или профиля (более тонкий материал обрабатывается больше, чем толстый материал, и обработка увеличивает прочность).Для двух наиболее распространенных марок стали, используемых в Великобритании, указанные минимальный предел текучести и минимальный предел прочности на растяжение показаны в таблице ниже для сталей в соответствии с BS EN 10025-2 [1] .
Марка | Предел текучести (Н / мм 2 ) для номинальной толщины t (мм) | Предел прочности на разрыв (Н / мм 2 ) для номинальной толщины t (мм) | ||||
---|---|---|---|---|---|---|
т ≤ 16 | 16 | 40 | 63 | 3 | 100 | |
S275 | 275 | 265 | 255 | 245 | 410 | 400 |
S355 | 355 | 345 | 335 | 325 | 470 | 450 |
Национальное приложение Великобритании к BS EN 1993-1-1 [2] позволяет использовать минимальное значение текучести для конкретной толщины в качестве номинального (характеристического) предела текучести f y и минимального значения прочности на растяжение. прочность f u использовать как номинальный (характеристический) предел прочности.
Подобные значения даны для других марок в других частях BS EN 10025 и для полых профилей в соответствии с BS EN 10210-1 [3] .
[вверх] Холодногнутые стали
Существует широкий спектр марок стали для полосовой стали, пригодной для холодной штамповки. Минимальные значения предела текучести и предела прочности указаны в соответствующем стандарте на продукцию BS EN 10346 [4] .
BS EN 1993-1-3 [5] содержит значения базового предела текучести f yb и предела прочности на растяжение f u , которые должны использоваться в качестве характерных значений при проектировании.
[вверх] Нержавеющая сталь
Марки нержавеющей стали обозначаются числовым «номером стали» (например, 1.4401 для типичной аустенитной стали), а не системой обозначений «S» для углеродистых сталей. Зависимость напряжения от деформации не имеет четкого различия между пределом текучести, и «предел текучести» нержавеющей стали для нержавеющей стали обычно указывается в терминах предела текучести, определенного для конкретной постоянной деформации смещения (обычно 0,2% деформации).
Прочность обычно используемых конструкционных нержавеющих сталей составляет от 170 до 450 Н / мм². Аустенитные стали имеют более низкий предел текучести, чем обычно используемые углеродистые стали; Дуплексные стали имеют более высокий предел текучести, чем обычные углеродистые стали. Как для аустенитных, так и для дуплексных нержавеющих сталей отношение предела прочности к пределу текучести больше, чем для углеродистых сталей.
BS EN 1993-1-4 [6] содержит в таблице номинальные (характеристические) значения предела текучести f y и минимального предела прочности на растяжение f u для сталей согласно BS EN 10088-1 [7] для использование в дизайне.
[вверх] Прочность
Образец для испытаний на удар с V-образным надрезом
Все материалы имеют недостатки. В стали эти дефекты принимают форму очень мелких трещин. Если сталь недостаточно прочная, «трещина» может быстро распространяться без пластической деформации и привести к «хрупкому разрушению». Риск хрупкого разрушения увеличивается с увеличением толщины, растягивающего напряжения, концентраторов напряжений и более низких температур.Вязкость стали и ее способность противостоять хрупкому разрушению зависят от ряда факторов, которые следует учитывать на этапе спецификации. Удобной мерой прочности является испытание на удар по Шарпи с V-образным надрезом — см. Изображение справа. В этом испытании измеряется энергия удара, необходимая для разрушения небольшого образца с надрезом при заданной температуре одним ударом маятника.
В различных стандартах на продукцию указываются минимальные значения энергии удара для различных классов прочности каждого класса прочности.Для нелегированных конструкционных сталей основными обозначениями марок стали JR, J0, J2 и K2. Для мелкозернистых сталей, закаленных и отпущенных сталей (которые обычно более жесткие, с более высокой энергией удара) используются разные обозначения. Сводка обозначений ударной вязкости приведена в таблице ниже.
Стандартный | Земляное полотно | Ударная вязкость | Температура испытания |
---|---|---|---|
BS EN 10025-2 [1] BS EN 10210-1 [3] | JR | 27J | 20 o С |
J0 | 27J | 0 o С | |
J2 | 27J | -20 o С | |
К2 | 40J | -20 o С | |
BS EN 10025-3 [8] | N | 40J | -20 o с |
NL | 27J | -50 o с | |
BS EN 10025-4 [9] | M | 40J | -20 o с |
мл | 27J | -50 o с | |
BS EN 10025-5 [10] | J0 | 27J | 0 o С |
J2 | 27J | -20 o С | |
К2 | 40J | -20 o С | |
J4 | 27J | -40 o С | |
J5 | 27J | -50 o С | |
BS EN 10025-6 [11] | Q | 30J | -20 o с |
QL | 30J | -40 o с | |
QL1 | 30J | -60 o с |
Для тонкостенных сталей, предназначенных для холодной штамповки, требования к энергии удара для материала толщиной менее 6 мм не предъявляются.
Выбор подходящего подкласса для обеспечения соответствующей прочности в расчетных ситуациях приведен в BS EN 1993‑1‑10 [12] и связанном с ним UK NA [13] . Правила связывают температуру воздействия, уровень напряжений и т. Д. С «предельной толщиной» для каждого подкласса стали. PD 6695-1-10 [14] содержит полезные справочные таблицы, а руководство по выбору подходящего подкласса дано в ED007.
Эти правила проектирования были разработаны для конструкций, подверженных усталости, таких как мосты и опорные конструкции кранов, и признано, что их использование в зданиях, где усталость играет второстепенную роль, является чрезвычайно безопасным.
Публикация SCI P419 представляет модифицированные пределы толщины стали, которые могут использоваться в зданиях, где усталость не является соображением при проектировании. Эти новые пределы были получены с использованием того же подхода, что и правила проектирования Еврокода, но существенно снижают рост трещин из-за усталости. Используется слово «уменьшить», поскольку предполагать, что никакого роста вообще нет, означало бы полностью устранить эффект утомления. Допускается некоторая усталость (20 000 циклов) на основании ориентировочных указаний стандарта DIN.
Термин «квазистатический» будет охватывать такие конструкции — в действительности, может иметь место некоторая ограниченная цикличность нагрузки, но это обычно не рассматривается — подход к проектированию состоит в том, чтобы рассматривать все нагрузки как статические. Ключом к новому подходу является формула для выражения роста трещины за период до 20 000 циклов. Эксперты из Ахенского университета (которые участвовали в разработке Еврокода) дали это важнейшее выражение.
Дополнительная информация доступна в технической статье в сентябрьском выпуске журнала NSC за 2017 год.
Нержавеющая сталь обычно намного прочнее углеродистой стали; минимальные значения указаны в BS EN 10088-4 [15] . BS EN 1993-1-4 [6] утверждает, что аустенитные и дуплексные стали достаточно вязкие и не подвержены хрупкому разрушению при рабочих температурах до -40 ° C.
[вверху] Пластичность
Пластичность — это мера степени, в которой материал может деформироваться или растягиваться между началом текучести и возможным разрушением под действием растягивающей нагрузки, как показано на рисунке ниже.Конструктор полагается на пластичность для ряда аспектов проектирования, включая перераспределение напряжений в предельном состоянии, конструкцию группы болтов, снижение риска распространения усталостной трещины и в производственных процессах сварки, гибки и правки. Различные стандарты для марок стали в приведенной выше таблице настаивают на минимальном значении пластичности, поэтому проектные допущения действительны, и если они указаны правильно, проектировщик может быть уверен в их адекватных характеристиках.
Напряжение — деформация стали
[вверх] Свариваемость
Приваривание ребер жесткости к большой сборной балке
(Изображение любезно предоставлено Mabey Bridge Ltd)
Все конструкционные стали в основном поддаются сварке. Однако сварка предполагает локальное плавление стали, которая впоследствии остывает.Охлаждение может быть довольно быстрым, потому что окружающий материал, например балка обеспечивает большой «теплоотвод», а сварной шов (и вводимое тепло) обычно относительно невелик. Это может привести к упрочнению «зоны термического влияния» (HAZ) и снижению ударной вязкости. Чем больше толщина материала, тем больше снижение ударной вязкости.
Склонность к охрупчиванию также зависит от легирующих элементов, главным образом, но не исключительно, от содержания углерода. Эту восприимчивость можно выразить как «эквивалентное значение углерода» (CEV), и различные стандарты продукции для углеродистой стали содержат выражения для определения этого значения.
BS EN 10025 [1] устанавливает обязательные пределы для CEV для всех покрываемых конструкционных стальных изделий, и это простая задача для тех, кто контролирует сварку, — гарантировать, что используемые спецификации процедуры сварки соответствуют соответствующей марке стали и CEV.
[вверх] Прочие механические свойства стали
Другие важные для проектировщика механические свойства конструкционной стали включают:
- Модуль упругости, E = 210 000 Н / мм²
- Модуль сдвига, G = E / [2 (1 + ν )] Н / мм², часто принимается равным 81 000 Н / мм²
- коэффициент Пуассона, ν = 0.3
- Коэффициент теплового расширения, α = 12 x 10 -6 / ° C (в диапазоне температур окружающей среды).
[вверху] Прочность
Нанесение защиты от коррозии на месте
(Изображение любезно предоставлено Hempel UK Ltd.)
Еще одним важным свойством является защита от коррозии. Хотя доступны специальные коррозионно-стойкие стали, они обычно не используются в строительстве.Исключением является погодостойкая сталь.
Наиболее распространенными способами защиты конструкционной стали от коррозии являются окраска или гальваника. Требуемый тип и степень защиты покрытия зависит от степени воздействия, местоположения, расчетного срока службы и т. Д. Во многих случаях во внутренних сухих условиях не требуется никаких антикоррозионных покрытий, кроме соответствующей противопожарной защиты. Доступна подробная информация о защите от коррозии конструкционной стали.
[вверх] Погодостойкая сталь
Атмосферостойкая сталь— это высокопрочная низколегированная сталь, которая противостоит коррозии, образуя прилипшую защитную «патину» от ржавчины, которая препятствует дальнейшей коррозии.Защитное покрытие не требуется. Он широко используется в Великобритании для строительства мостов и некоторых зданий. Он также используется для архитектурных элементов и скульптурных сооружений, таких как Ангел Севера.
Ангел Севера
[вверху] Нержавеющая сталь
Типичные кривые напряжение-деформация для нержавеющей и углеродистой стали в отожженном состоянии
Нержавеющая сталь — это материал с высокой коррозионной стойкостью, который можно использовать в конструкционных целях, особенно там, где требуется высококачественная обработка поверхности.Подходящие классы воздействия в типичных условиях окружающей среды приведены ниже.
Поведение нержавеющих сталей при растяжении отличается от углеродистых сталей по ряду аспектов. Наиболее важное различие заключается в форме кривой напряжения-деформации. В то время как углеродистая сталь обычно демонстрирует линейное упругое поведение вплоть до предела текучести и плато перед деформационным упрочнением, нержавеющая сталь имеет более округлую реакцию без четко определенного напряжения текучести. Следовательно, предел текучести нержавеющей стали обычно определяется для конкретной остаточной деформации смещения (обычно 0.2% деформации), как показано на рисунке справа, на котором показаны типичные экспериментальные кривые напряжение-деформация для обычных аустенитных и дуплексных нержавеющих сталей. Показанные кривые представляют диапазон материалов, которые могут быть поставлены, и не должны использоваться при проектировании.
Описание | Марка | Минимум 0.Предел текучести 2% (Н / мм 2 ) | Предел прочности на разрыв (Н / мм 2 ) | Относительное удлинение при разрыве (%) |
---|---|---|---|---|
Основные хромоникелевые аустенитные стали | 1.4301 | 210 | 520–720 | 45 |
1.4307 | 200 | 500–700 | 45 | |
Молибден-хромникелевые аустенитные стали | 1.4401 | 220 | 520–670 | 45 |
1.4404 | 220 | 520–670 | 45 | |
Дуплексные стали | 1,4162 | 450 | 650–850 | 30 |
1.4462 | 460 | 640–840 | 25 |
Механические свойства относятся к горячекатаному листу. Для холоднокатаной и горячекатаной полосы указанные значения прочности на 10-17% выше.
BS EN ISO 9223 [16] Класс атмосферной коррозии | Типичная внешняя среда | Подходящая нержавеющая сталь |
---|---|---|
C1 (Очень низкий) | Пустыни и арктические районы (очень низкая влажность) | 1.4301 / 1.4307, 1.4162 |
C2 (Низкий) | Засушливые или низкие уровни загрязнения (сельские районы) | 1.4301 / 1.4307, 1.4162 |
C3 (средний) | Прибрежные районы с небольшими отложениями соли Городские или промышленные районы с умеренным загрязнением | 1.4401 / 1.4404, 1.4162 (1.4301 / 1.4307) |
C4 (высокий) | Загрязненная городская и промышленная атмосфера Прибрежные районы с умеренными солевыми отложениями Дорожная среда с солями для защиты от обледенения | 1.4462, (1.4401 / 1.4404), другие более высоколегированные дуплексы или аустенитные материалы |
C5 (Очень высокий) | Сильно загрязненная промышленная среда с высокой влажностью Морская среда с высокой степенью солевых отложений и брызг | 1.4462, другие более высоколегированные дуплексы или аустенитные материалы |
Материалы, подходящие для более высокого класса, могут использоваться для более низких классов, но могут быть неэффективными с точки зрения затрат. Материалы в скобках могут быть рассмотрены, если допустима умеренная коррозия. Накопление коррозионных загрязнителей и хлоридов будет выше в защищенных местах; следовательно, может потребоваться выбрать рекомендуемый сорт из следующего более высокого класса коррозии.
[вверх] Список литературы
- ↑ 1.0 1,1 1,2 BS EN 10025-2: 2019 Горячекатаный прокат из конструкционных сталей. Технические условия поставки нелегированных конструкционных сталей, BSI.
- ↑ NA + A1: 2014 к BS EN 1993-1-1: 2005 + A1: 2014, Национальное приложение Великобритании к Еврокоду 3: Проектирование стальных конструкций Общие правила и правила для зданий, BSI
- ↑ 3,0 3,1 BS EN 10210-1: 2006 Конструкционные полые профили горячей обработки из нелегированных и мелкозернистых сталей. Технические требования к поставке, BSI.
- ↑ BS EN 10346: 2015 Стальной плоский прокат с непрерывным горячим покрытием для холодной штамповки. Технические условия поставки. BSI
- ↑ BS EN 1993-1-3: 2006 Еврокод 3: Проектирование стальных конструкций. Общие правила — Дополнительные правила для холодногнутых профилей и листов, BSI.
- ↑ 6,0 6,1 BS EN 1993-1-4: 2006 + A1: 2015 Еврокод 3. Проектирование стальных конструкций. Основные правила. Дополнительные правила для нержавеющих сталей, BSI
- ↑ BS EN 10088-1: 2014 Нержавеющие стали.Список нержавеющих сталей, BSI
- ↑ BS EN 10025-3: 2019, Горячекатаный прокат из конструкционных сталей, Часть 3: Технические условия поставки нормализованных / нормализованных прокатных свариваемых мелкозернистых конструкционных сталей, BSI
- ↑ BS EN 10025-4: 2019, Горячекатаный прокат из конструкционных сталей, Часть 4: Технические условия поставки термомеханических прокатных свариваемых мелкозернистых конструкционных сталей, BSI
- ↑ BS EN 10025-5: 2019, Горячекатаный прокат из конструкционных сталей, Часть 5: Технические условия поставки для конструкционных сталей с повышенной стойкостью к атмосферной коррозии, BSI
- ↑ BS EN 10025-6: 2019, Горячекатаный прокат из конструкционных сталей, Часть 6: Технические условия поставки плоского проката из конструкционных сталей с высоким пределом текучести в закаленном и отпущенном состоянии, BSI
- ↑ BS EN 1993-1-10: 2005 Еврокод 3.Проектирование металлоконструкций. Прочность материала и свойства по толщине, BSI.
- ↑ NA к BS EN 1993-1-10: 2005, Национальное приложение Великобритании к Еврокоду 3: Проектирование стальных конструкций. Прочность материала и свойства по толщине. BSI
- ↑ PD 6695-1-10: 2009 Рекомендации по проектированию конструкций согласно BS EN 1993-1-10. BSI
- ↑ 15,0 15,1 BS EN 10088-4: 2009 Нержавеющие стали. Технические условия поставки листов и полос из коррозионно-стойких сталей строительного назначения, BSI.
- ↑ BS EN ISO 9223: 2012 Коррозия металлов и сплавов, Коррозионная активность атмосферы, Классификация, определение и оценка. BSI
[вверх] Ресурсы
[вверху] См. Также
СтальS45C для использования в конструкции машин JIS G4051
Марка сталиS45C является очень распространенным материалом для конструкционной стали. В этом посте вы можете подробно ознакомиться с техническими характеристиками и характеристиками конструкционной углеродистой стали S45C для машин.
1. Сталь S45C соответствует JIS G4051
Марка сталиS45C — это одна из марок стали в соответствии с JIS G4051.что является стандартной спецификацией углеродистых сталей для использования в конструкции машин. В частности, это стандарт для термообрабатываемых сталей, легированных сталей и сталей с автоматической резкой.
2. Стандартные доступные формы стали S45C JIS
JIS S45C Steel — это сталь средней прочности. Подходит для шпилек валов, шпонок и т. Д. Доступны как катаные, так и нормализованные. Сталь для машиностроения JIS S45C обычно поставляется в виде квадратного прутка, круглого прутка или плоского листа. Сталь JIS S45C отличается превосходной свариваемостью и обрабатываемостью, а сталь S45C может подвергаться различным термообработкам.
3. Эквиваленты стали марки JIS S45C
Существуют некоторые другие стандарты конструкционной стали и марки стали, аналогичные и эквивалентные марке стали JIS S45C, как показано ниже:
4. Свойства стали JIS S45C
Химический состав
Стандартный | Марка | С | Мн | P | S | Si |
JIS G4051 | S45C | 0.42-0,48 | 0,60–0,90 | 0,03 | 0,035 | 0,15–0,35 |
Сталь JIS Spec S45C Механические свойства
- Плотность (кг / м3) 7700-8030
- Модуль Юнга (ГПа) 190-210
- Прочность на разрыв (МПа) 569 (стандарт) 686 (закалка, отпуск)
- Предел текучести (МПа) 343 (стандарт) 490 (закалка, отпуск)
- Коэффициент Пуассона 0,27-0,30
5.JIS S45C Твердость материала
- Твердость по Бринеллю (HB) 160-220 (отожженный)
6. Термическая обработка стали JIS S45C
СтальJIS Сталь марки S45C применима для соответствующих операций термообработки.
- Полный отжиг 800-850 ° C
- Нормализация 840-880 ° C
- Закалка 820-860 ° C
- Закалочная среда Вода или масло
- Закалка 550-660 ° C
Точка плавления
- Температура плавления S45C составляет ~ 1520 градусов Цельсия
7.Применение стальных материалов JIS S45C
Углеродистая сталь маркиJIS S45C широко используется в машиностроении, обладает хорошими механическими свойствами. Но сталь S45C Grade Steel — это среднеуглеродистая сталь, закаленные характеристики не очень хороши, сталь 45 может быть закалена до HRC42 ~ 46. Так что, если вам нужна твердость поверхности, но вы также надеетесь сыграть сталь 45 # с превосходными механическими свойствами, часто сталь 45 # цементация поверхности, позволяющая получить необходимую твердость поверхности. Сталь JIS S45c в основном используется для различных валов двигателей, автомобильных деталей.
Приветствуем любые запросы на сталь JIS S45C и аналогичные. Мы серьезный и надежный поставщик стали S45C с гарантией качества.
MatWeb, ваш источник информации о материалахЧто такое MatWeb? MatWeb’s база данных свойств материалов с возможностью поиска включает паспорта термопластов и термореактивных полимеров, таких как АБС, нейлон, поликарбонат, полиэстер, полиэтилен и полипропилен; металлы, такие как алюминий, кобальт, медь, свинец, магний, никель, сталь, суперсплавы, сплавы титана и цинка; керамика; плюс полупроводники, волокна и другие инженерные материалы. Преимущества регистрации в MatWeb Как найти данные о собственности в MatWebНажмите здесь, чтобы узнать, как войти материалы вашей компании в MatWeb. У нас есть более 150 000 материалы в нашей базе данных, и мы постоянно добавляем их, чтобы обеспечить Вам доступен самый полный бесплатный источник данных о собственности материалов в Интернете. Для вашего удобства в MatWeb также есть несколько конвертеров. и калькуляторы, которые делают общие инженерные задачи доступными одним щелчком мыши. кнопки. MatWeb находится в стадии разработки.Мы постоянно стремимся найти лучшее способы служить инженерному сообществу. Пожалуйста, не стесняйтесь свяжитесь с нами с любыми комментариями или предложениями. База данных MatWeb состоит в основном из предоставленных таблиц данных и спецификаций. производителями и дистрибьюторами — сообщите им, что вы видели их данные о материалах на MatWeb. |
|
Характеристики металлов и материалов | Продукция
Материалы
Листовая оцинкованная сталь, горячекатаная, холоднокатаная.Углеродистая сталь, нержавеющая сталь, алюминий, цинк, сталь Corten, Redi-Kote, предварительно окрашенная оцинкованная сталь и предварительно окрашенный алюминий
Калибры и толщина
Легкие стальные материалы варьируются от 26 до 18 — 30ksi
Толстые стальные материалы в диапазоне от 16 до 10 — 50 фунтов на квадратный дюйм
Производство чугуна варьируется от 1/4 до 3/8 дюйма, пластины, уголки и трубы
Строительные элементы и компоненты производятся из
- оцинкованные стальные листы — прокатная сталь с прослеживаемостью
Спецификация исходного материала
26ga.(30 мил.) — Предел текучести 33 фунтов на квадратный дюйм / предел прочности на разрыв 45 фунтов на квадратный дюйм / лакокрасочное покрытие
26ga. (30 мил.) — предел текучести 33 фунтов на квадратный дюйм / предел прочности на разрыв 45 фунтов на квадратный дюйм / оцинкованное покрытие G-40
25ga. (30 мил.) — Предел текучести 33 фунтов на квадратный дюйм / предел прочности на разрыв 45 фунтов на квадратный дюйм / оцинкованное покрытие G-40
20ga. (33 мил.) — Предел текучести 33 фунтов на квадратный дюйм / предел прочности на разрыв 45 фунтов на квадратный дюйм / оцинкованное покрытие G-60
18ga. (43 мил.) — предел текучести 33 фунтов на квадратный дюйм / предел прочности на разрыв 45 фунтов на квадратный дюйм / оцинкованное покрытие G-60
16ga.(57 мил.) — Предел текучести 57 фунтов на квадратный дюйм / предел прочности на разрыв 65 фунтов на квадратный дюйм / оцинкованное покрытие G-60
14ga. (68 мил.) — Предел текучести 57 фунтов на квадратный дюйм / предел прочности на разрыв 65 фунтов на квадратный дюйм / оцинкованное покрытие G-90
12ga. (97 мил.) — предел текучести 57 фунтов на квадратный дюйм / предел прочности на разрыв 65 фунтов на квадратный дюйм / оцинкованное покрытие G-90
10ga. (30 мил.) — Предел текучести 33 фунтов на квадратный дюйм / предел прочности на разрыв 45 фунтов на квадратный дюйм / оцинкованное покрытие G-40
Качества : ASTM A-653
Стандартное покрытие : G-40 и G-60
Допуски : ASTM A924
Длина : 10-футовые и 12-футовые листы
Для большей длины требуются более длительные сроки поставки и стоимость
Спецификации на другие металлы и материалы
- Другие марки листовой стали по запросу или по запросу
- G -90 Оцинкованный, доступен с дополнительными сроками поставки и стоимостью
- Алюминий
- Нержавеющая сталь
Спецификация материала
Материал : Листовая оцинкованная сталь
Качества : ASTM A-653
Покрытие G-60
Допуски : ASTM A924
Размеры : 10-футовые и 12-футовые листы [шириной] 48 дюймов