Гидроаккумулятор водяной: цены и отзывы, купить в Москве. – интернет-магазин ВсеИнструменты.ру

Содержание

Гидроаккумулятор и реле давления. Настраиваем правильно

Рис1. Гидроаккумулятор

    При сборке насосной станции важнейшим вопросом является настройка реле давления и гидроаккумулятора (Рис.1). От правильно выставленных пределов зависит не только удобство пользования системой водоснабжения, но и продолжительность эксплуатации некоторых элементов насосной станции.

    Часто возникает впечатление, что все те советы, которые можно найти в сети Интернет по настройке давлений, не просто далеки от реальности, но и вредны, так как не соответствуют действительности. Вот и приходится каждому разбираться в принципах работы и настройке самостоятельно. В данной статье приводится порядок действий по настройке давлений, следуя которым удалось отрегулировать работу насосной станции, активно эксплуатируемой уже пятый год.

Рис2. Крышка золотника

Гидроаккумулятор – не только вода.

Немного теории

    Внутри металлического бака гидроаккумулятора (ГА) находится резиновая емкость (груша). Насос нагнетает воду именно в грушу. В пространство между стенками бака и емкостью через золотник закачивается воздух. Чем больше воды в груше, тем сильнее сжат воздух и тем выше его давление, стремящееся вытолкнуть воду обратно. Также существуют мембранные модели ГА, в которых металлический бак разделен пополам мембраной, с одной стороны которой находится воздух, а с другой вода.

Рис3. Проверка давления

Практика. Воздух

    Итак, вот он – купленный гидроаккумулятор. Прежде всего, необходимо определить давление воздуха в нем. Несмотря на то, что производитель, обычно, накачивает 1,5 Атмосферы, бывают случаи, когда из-за утечки к моменту продажи это значение намного ниже. Обыкновенный автомобильный золотник закрыт декоративным колпачком (Рис. 2). Откручиваем его и проверяем давление в баке (Рис.3). Чем проверять? Так как погрешность даже в 0,5 атм. существенно влияет на работу всей системы, то чем выше точность используемого для проверки манометра, тем лучше. На рынке представлены три вида таких манометров: электронные, механические автомобильные (корпус металлический) и пластиковые, идущие в комплекте с некоторыми насосами. Последние дают огромную погрешность, поэтому для ГА их лучше не использовать. Обычно они китайского происхождения, в непрочном пластиковом корпусе. На показания электронных влияют температура и заряд батареи, к тому же их стоимость довольно высока. Поэтому используем обычный автомобильный манометр, желательно прошедший поверку. Чем на меньшее значение градуирована шкала, тем лучше. Например, если шкала рассчитана на 20 атм., а измерить нужно всего 1-2, то высокой точности измерения ждать не стоит.

Рис4. Реле давления

    Меньшее количество воздуха в баке означает больший запас воды, но разброс давления при закачанном и почти опустошенном баке будет довольно велик. Тут все зависит от предпочтений. Если необходимо, чтобы давление воды в водопроводе постоянно было высоким (городским), то воздуха в баке должно быть не менее 1,5 атм. Соответственно, кто-то может решить, что напор даже в одну атмосферу для бытовых нужд вполне достаточен. В первом случае ГА запасает меньше воды, что означает частое включение подкачивающего насоса и потенциальные проблемы при отсутствии электричества, так как нет запаса воды. А во втором жертвовать приходится давлением: при заполненном баке можно принять душ с массажем, а по мере уменьшения воды удобна будет только ванна.

    Определившись с желаемым режимом работы, следует либо стравить лишний воздух, либо подкачать. Не рекомендуется уменьшать давление ниже 1 атм., а также слишком перекачивать. Недостаточное количество воздуха означает, что наполненная водой груша может локально тереться о стенки бака, постепенно повреждаясь. В то же время, избыток воздуха не позволит закачать много воды, так как существенная часть объема ГА будет занята им.

Реле давления

    Открываем крышку реле давления (Рис.4). Здесь доступна настройка верхнего и нижнего пределов срабатывания, то есть, значений давления, при которых насос будет отключаться и включаться. Две гайки и две пружины: большая (P) и малая (дельта P). Большая пружина отвечает за нижний предел или за давление включения насоса, что одно и то же. Из конструкции видно, что ее действие словно помогает воде замкнуть контакты.

    Малая позволяет выставить разницу давлений. Кстати, это говорится во всех инструкциях, однако не указывается, что является точкой отсчета. Так вот, основным является нижний предел, то есть гайка пружины «P». Пружина разницы давлений, конструктивно, сопротивляется давлению воды: она отталкивает подвижную пластину вниз, от контактов.

Практика. Вода

    После выставления нужного значения давления воздуха, подключаем ГА к системе и включаем в работу, внимательно следя за водяным манометром. На каждом ГА указаны значения рабочего и предельного давлений – их превышения недопустимо. Также в техническом паспорте к насосу указывается его напор (в метрах): 10 м соответствует 1 атмосфере. Насос должен быть вручную отключен от сети при:

  • достижении рабочего давления ГА;
  • достижении предельного значения напора насоса. Это просто определить – рост давления прекращается.

    Обычно, мощности насосов не позволяют накачать бак до предела, да и необходимости в этом нет, так как снижается ресурс, как насоса, так и груши. В большинстве случае значение давления отключения выбирается на 1-2 атм. выше, чем включения.

    Например, манометр показывает 3 атм., что, по мнению владельца насосной станции, достаточно для его нужд. Отключаем насос и медленно вращаем гайку «дельта P» на уменьшение, пока механизм не сработает.

    Открываем кран и сливаем воду из системы. При этом наблюдаем за манометром и значением, при котором реле включится – это давление включения насоса (нижний предел). Оно должно быть немного больше (на 0,1-0,3 атм.) давления воздуха в пустом ГА. Благодаря этому груша прослужит дольше. Вращая «P», выставляем нижний предел, снова включаем насос в сеть и ждем, пока не будет достигнуто нужное давление. Подстраиваем гайку «дельта P». Гидроаккумулятор настроен.

    Раз в 1 — 3 месяца необходимо в обязательном порядке проверять давление воздуха. Вода из бака при этом должна быть слита (отключаем насос от сети и открываем краны).

 


Рекомендуемая продукция нами

насосы grundfos sq, grundfos sqe, grundfos sololift2 wc-1, grundfos sololift2 wc-3

Статьи: настройка реле давления и регулировка воздуха в гидроаккумуляторе

Реле давления — элемент который управляет работой насосной станции (например AQUAJET или AQUAJET-INOX) и который делает возможной её работу в автоматическом режиме.

Реле давления имеет несколько характеристик:

  • Давления включения (Pвкл) — это то давление (бар), при котором происходит включение насосной станции путем замыкания контактов в реле давления. Иногда давление включения еще называют „нижним“ давлением.
  • Давление выключения (Pвыкл) — это давление (бар), при котором происходит выключение насосной станции путем размыкания контактов в реле давления. Иногда давление выключения еще называют „верхним“ давлением.
  • Перепад давления (ΔP) — абсолютная разница между давлением выключения и давлением включения (бар).
  • Максимальное давление выключения — это то максимальное давление (бар), при котором возможно отключение насосной станции.

Любое реле давления имеет заводские установки и, как правило, они следующие:
Давление включения: 1,5-1,8 бар
Давление выключения: 2,5-3 бар
Максимальное давления выключения: 5 бар

Как все это работает:
Допустим, насосная станция подключена (об этом в статье «Подготовка насосной станции DAB к работе»), и вся система заполнена водой. После открытия любого крана (душ, мойка и т.п.) и начала водоразбора, давление в системе начнет плавно (благодаря мембранному гидробаку) падать, что легко отследить по манометру. Все это время вода поступает потребителю из гидробака. При достижении „нижнего“ давления включения (его можно также отследить по манометру в момент включения насоса) контакты внутри реле давления замкнутся и насос запустится. Все остальное время водоразбора насос продолжает работать, подавая воду напрямую потребителю. После завершения водоразбора (все краны закрыты), насос все еще продолжает работать, только теперь вода подается не потребителю, а закачивается в гидробак (т.к. больше ей некуда деться) и давление плавно возрастает. При достижении давления выключения (можно легко отследить по манометру в момент остановки насоса) контакты внутри реле давления размыкаются и насос останавливается. При следующем водоразборе цикл повторяется. Все довольно просто.

Но что делать если заводские установки реле давления не очень комфортны? Например: на верхних этажах давление падает очень заметно, или система очистки воды требует на входе не менее 2,5 бар, в то время как насос включается только при 1,5-1,8 бар.


Настроить реле давление можно и самостоятельно:

Записываем по манометру давление включения и выключения при работающем насосе. Отключаем питание от насоса и снимаем верхнюю крышку реле давления (как правило, отвернув один винт). Вы увидите два винта, один более большой, находится в верхней части реле, а второй, немного меньшего размера, находится под ним. Верхний винт отвечает за давление выключения и как правило рядом с ним находится буква «P» и стрелка со знаками «+» и «-». Затем вращаем винт в нужном направлении (если давление выключения необходимо поднять то вращаем по направлению знака «+», если опустить то в направлении знака «-»). Сколько вращать? Сделайте оборот (пол оборота, полтора — сколько хотите). После этого запускаем насос и смотрим, при каком давлении он выключится теперь. Запоминаем, выключаем питание насоса, и вращаем винт дальше, опять запускаем насос и записываем новое значение, таким образом приближаясь к нужному значению.

Нижний винт отвечает за разницу между давлением выключения и давлением включения. Как правило рядом написано «ΔP» и находится стрелка со знаками «+» и &laquo-». Настройка разницы давлений аналогична настройке давления выключения. Остается только один вопрос, какой она должна быть? Разница между давлением включения и выключения обычно составляет 1,0-1,5 бар. Причем чем выше давление выключения, тем большей может быть эта разница. Например, при заводских установках Pвкл = 1,6 бар, Pвыкл = 2,6 бар разница составляет 1 бар, это как раз стандартное значение. Если мы хотим изменить заводские установки и поднять Рвыкл до 4 бар, то разницу можно сделать в 1,5 бар, т.е. Pвкл нужно установить на уровне 2,5 бар. Надо понимать, что чем больше эта разница, тем выше перепад давления в системе, что не всегда комфортно. Но в то же время, реже будет включаться насос, и больше воды поступит из гидробака до момента включения насоса.

Это справедливо только в том случае, когда насос может обеспечить требуемое давление (смотрите характеристику насоса). Т.е. если насос может выдать по паспорту только 3,5 бар (с учетом всех видов потерь), то настройка реле давления на выключение 4 бар ничего не даст. Насос просто не сможет обеспечить требуемое давление и в данном случае будет работать не останавливаясь. И если нужно все-таки именно 4 бар, то придется менять насос на более мощный.


Каким же все-таки должно быть давление воздуха в воздушной полости гидробака?

Очень многие не задумываются, или же просто не знают, что нужно следить еще и за этим. К сожалению да, нужно, от этого напрямую зависит срок службы мембраны гидробака, а в конечном счете, и насоса.

Замеряем давление воздуха в воздушной полости гидробака. Делаем это только на отключенном от системы гидробаке — отключаем питание насоса, открываем любой кран за насосом и ждем пока вода выйдет из гидробака. Либо замеряем на установке еще не подключенной к системе водоснабжения. Для этого снимаем декоративный колпачок с воздушного ниппеля гидробака и подсоединяем к нему обычный автомобильный манометр (для проверки давления в шинах автомобиля). Запоминаем это давление. (Как правило на небольших гидробаках, емкостью до 50 литров, это давление будет равно 1,5 бар). Теперь самое главное правило: давление воздуха в гидробаке должно быть меньше, чем давление включения насоса примерно на 10%. Т.е. если давление включения насоса составляет 1,6 бар, то давление воздуха должно составлять 1,4-1,5 бар. В большинстве случаев, это и есть те заводские установки о которых говорилось выше. Т.е. покупая готовую насосную станцию, вы уже имеете полностью настроенную систему. Но как только вы внесли изменения в заводские установки реле давления, необходимо всегда изменять и давление воздуха в гидробаке. Например, если вы установили Pвкл = 2,5 бар, Pвыкл = 3,5 бар, то необходимо и давление воздуха поднять до значения в 2,2-2,3 бар.

Кстати, даже если вы ничего не меняли в заводских настройках, за давлением воздуха необходимо регулярно следить, или, хотя бы, контролировать его раз в год в начале дачного сезона. Важно чтобы это давление было постоянным, если же оно немного снизилось за зиму, его всегда можно поднять обычным автомобильным насосом до требуемого уровня.

Все эти несложные операции не займут много времени, достаточно уделить им внимание один раз в год, тем более, что все окупится долгой и бесперебойной работой всей системы водоснабжения в целом.

© 2007 DAB-SHOP.RU Настройка реле давления и регулировка давления воздуха в гидроаккумуляторе.

Гидроаккумуляторы для насосных станций, мембранные расширительные баки

Сортировать: По умолчаниюПо имени (A — Я)По имени (Я — A)По цене (возрастанию)По цене (убыванию)По рейтингу (убыванию)По рейтингу (возрастанию)По модели (A — Я)По модели (Я — A)

Показывать: 16255075100

Горизонтальный расширительный бак водоснабжения 24 л для насоса и замены в насосной станции, позволя. .

В наличии

1 344.00 р.

Горизонтальный нержавеющий расширительный бак 24л водоснабжения для насоса и замены в насосной станц..

В наличии

3 984. 00 р.

Горизонтальный нержавеющий расширительный бак 50л водоснабжения для насоса и замены в насосной станц..

В наличии

8 378.00 р.

Гидроаккумулятор для системы холодного и горячего водоснабжения PWB 100LX (модель PressureWave 10. .

В наличии

21 658.00 р.

Гидроаккумулятор для системы холодного и горячего водоснабжения GWS PWB 12LX (модель Pressure Wave 1..

В наличии

4 282. 00 р.

Гидроаккумулятор для системы холодного и горячего водоснабжения PWB 2LX (модель PressureWave 2 ли..

В наличии

2 105.00 р.

Гидроаккумулятор универсальный 35 л для системы холодного и горячего водоснабжения GWS PWB 35LX (мод. .

В наличии

8 400.00 р.

Гидроаккумулятор для системы холодного и горячего водоснабжения GWS PWB 4LX (модель Pressure Wave 4 ..

В наличии

3 047. 00 р.

Гидроаккумулятор напольный 60 л для системы холодного и горячего водоснабжения GWS PWB 60LV (модель ..

В наличии

15 976.00 р.

Гидроаккумулятор напольный 80 л для системы холодного и горячего водоснабжения GWS PWB 80LV (модель . .

В наличии

18 941.00 р.

Горизонтальный расширительный бак водоснабжения 100 л для насоса и замены в насосной станции, позвол..

В наличии

4 672. 00 р.

Горизонтальный расширительный бак водоснабжения 150 л с манометром для насоса и замены в насосной ст..

В наличии

7 541.00 р.

Горизонтальный расширительный бак водоснабжения 36 л для насоса и замены в насосной станции, позволя. .

В наличии

2 332.00 р.

Горизонтальный расширительный бак водоснабжения 50 л для насоса и замены в насосной станции, позволя..

В наличии

2 560. 00 р.

Горизонтальный расширительный бак водоснабжения 60 л для насоса и замены в насосной станции, позволя..

В наличии

3 603.00 р.

Горизонтальный расширительный бак водоснабжения 80 л для насоса и замены в насосной станции, позволя. .

В наличии

4 568.00 р.

Показано с 1 по 16 из 30 (всего 2 страниц)

Мембранный бак для системы водоснабжения частного дома

Гидроаккумуляторы (мембранные баки) для водоснабжения дома с насосом

Гидроаккумуляторы предназначены для эксплуатации в системах холодного и горячего водоснабжения в частном доме, на даче, в многоэтажных и многоквартирных зданиях, в промышленном и коммунальном хозяйствах, в системах солнечных батарей, в насосных станциях и установках, в системах ГВС, в системах потребления питьевой воды, защиты водопроводных систем от гидроудара и теплового расширения.

Мембранные баки водоснабжения подбираются по характеристикам:

  • По объему бака — 8 литров, 24 литра, 35 литров, 50 литров, 100 литров, 150 литров, 200 литров и более
  • По рабочему давлению бака — 6 бар (атмосфер), 10 бар (атм.), 16 бар (атм.)
  • По температурному режиму
  • По использованию с питьевой водой
  • По материалу изготовления (долговечности эксплуатации)
  • По монтажу и применению — вертикальный / горизонтальный / напольный / настенный / для насосной станции (установки)

Гидроаккумуляторы в Ижевске, по выгодным ценам

Гидроаккумуляторы

Для обустройства автономной системы подачи воды необходимо применять емкости, которые позволяют вести хранение определенного объема воды. Безусловно, самое простое решение в таком случае – приобрести пластиковый или металлический бак, который нужно монтировать вверху.

Но все большую популярность набирают крайне полезные устройства – гидроаккумуляторы.

Что это такое и чем обусловлена их «распространенность»?

Это специальная конструкция – аккумуляторный или напорный бак, которая имеет сложный состав, необходимое для выполнения следующих задач:

  • Во-первых, бесперебойная подачи воды.

  • Во-вторых, поддерживание постоянного значения давления.

  • В-третьих, предотвращение возникновения гидроударов, которые возникают в результате активации насоса.

Как итог, такое изделие позволяет существенным образом продлить срок использования насоса, предотвратив излишнее воздействие на него. Не возникает необходимости каждый раз запускать насос во время открытия крана.

Его основная сфера применения – в частных загородных домах, которые имеют автономное водоснабжение.

Что входит в состав этого агрегата?

Многие хотят купить гидроаккумуляторы в Ижевске, потому что это практичные, долговечные, повышающие уровень безопасности и способствующие беспроблемной эксплуатации, конструкции. Они имеют в своем составе следующие компоненты:

  • Металлический бак. Может обладать разным объемом.

  • Мембрана. Эластичное изделие, которое формирует 2 части – водяную и воздушную. Соответственно, первая заполняется водой, вторая – инертным газом.

  • Фланец. Он необходим для установки конструкции на трубопровод.

  • Ниппели. Элементы, необходимые для закачки и выпуска воздуха.

Считается, что рабочее давление такого изделия составляет 10 атмосфер, работать может данный агрегат в широком диапазоне температур – от минус 10 до плюс 100 градусов по Цельсию.

Как работает такое профессиональное оборудование?

Механизм работы таков – в результате поступление воды из трубы в мембрану, она получает растяжение. В таком случае газ, который находится в пространстве, сжимается. Возникает компенсационное давление на мембрану. Как итог, обеспечивается сохранение заданного напора.

По окончании процесса достижения конкретного уровня давления, после заполнения бака водой, реле деактивирует насосное оборудование.

Что нужно знать еще о таких устройствах?

С увеличением рабочего объема бака значительно увеличивается срок эксплуатации насоса без ремонта, так как отсутствует необходимости в его постоянном запуске. Ведь у любого оборудования имеется свой цикл работы, именно поэтому многие хотят купить гидроаккумуляторы.

В какой профессиональной организации можно приобрести такие изделия на самых выгодных условиях?

Если Вы находитесь в поиске настоящих профи, то советуем обратиться в наш магазин. Наша сантехника в Ижевске – самая практичная, надежная и доступная по стоимости. Благодаря нам Вы можете купить расширительный бак, обустроить водяной теплый пол.

Формируем адекватную ценовую политику, предлагаем широкий ассортимент продукции.

Гидроаккумулятор и расширительный бак узнай отличия чтобы не тратить деньги зря

Чем отличается гидроаккумулятор для водоснабжения от расширительного бака

Гидроаккумуляторы для водоснабжения или мембранные баки для воды применяют давно и много. Бывает потребитель даже не догадывается, что для систем водоснабжения и отопления применяются баки различных типов. Некоторые неграмотные продавцы уверяют покупателей, что различия в цвете бака. Красные баки для отопления — расширительный бак, синие для вoдоснабжения — гидроаккумулятор. Так ли это? Чем же отличается бак на отопление от бака на водоснабжение?

Итак, расширительный бак для отопления, судя из названия, применяются для сглаживания, компенсации  расширения теплоносителя, воды вследствие ее нагрева  в закрытых системах отопления. В результате работы нагревательного котла, жидкость-теплоноситель в нем расширяется. Известно, что при каждом нагреве жидкости на 10 °С, ее объем увеличивается приблизительно на 0,3 %. Исходя из этого, если жидкость нагреется на 70 °С, исходный объем теплоносителя увеличится на 3 %. Жидкость практически несжимаема и если в системе отопления не будет предусмотрено дополнительное место, куда денется излишек жидкости теплоносителя, то будет разрыв системы. Чтобы не допустить этого, применяются расширительные баки для систем отопления. Бывают баки горизонтальные и вертикальные. На нашем сайте Вы сможно найти баки различных производителей Elbi, Zilmet, Спрут.

Посмотреть цены на расширительные баки

Для питьевой воды применяются уже другие баки — это баки для систем водоснабжения (гидроаккумулятор). Мы на Насосвдом называем эти баки: гидроаккумуляторы для водоснабжения.

Для чего нужны они?

Первое, для запаса воды и поддержания нужного напора. Благодаря гидроаккумулятору, насос водоснабжения включается не каждый раз, когда мы набираем стакан воды, а  когда давление падает ниже установленного. Это конечно продлевает жизнь насосу. Ну и конечно, если купить гидроаккумулятор на 80л, 100л, 150л, 200л, 300л, то это уже реальный запас воды в доме. А в наше время запасы вода — вещь не лишняя.

Второе, гидроаккумулятор защищает систему от гидроударов. Гидравлический удар может появиться в трубах, если резко выключить или включить насос, быстро закрыть кран. Гидроудар может быть причиной прорыва трубопроводов и уменьшает время службы сантехнической арматуры. 

По виду гидроаккумуляторы для водоснабжения и расширительные баки систем отопления одинаковы. Однако назначение и требования к использованию у них разные, значит и конструкция разная. Главное отличие гидроаккумулятора от расширительного бака заключается в материале изготовления мембраны, а также особенностях расположения воздушной и водяной полостей. Гидроаккумулятор представляет собой железный бак с мембраной в виде груши с водой внутри, на которую под давлением давит воздух, находящийся между корпусом бака и мембраной (грушей).

А расширительный бак для отопления разделен внутри резиновой мембраной на две полости: одна из них заполняется теплоносителем, а другая воздухом. Поэтому нельзя применять расширительные баки для отопления в системах водоснабжения, так как вода в системе водоснабжения будет соприкасаться со стенками стального бака, они постепенно поржавеют и из  Вашего крана может потечь ржавая вода.

Различны требования и к материалам, применяемых в изготовлении мембран. Мембраны для расширительных баков должны быть долговечны и выдерживать температуры до +90 °С.

Для систем водоснабжения температурные характеристики резины не так важны. Здесь имеет важное значение то, что есть частые циклы расширения-сужения и контакт с питьевой водой. Для материала мембран для гидроаккумуляторов нужно использовать эластичную пищевую резину.

Гидроаккумулятор состоит:

Металлическая емкость 1, внутри которой вставлена резиновая мембрана в виде груши 2 из пищевой резины. Фартук мембраны закреплен между фланцами 3 с помощью болтов 4. В верхней части бака имеется  тяга с патрубком 5, закрепленная гайкой 6. Патрубок служит для установки предохранительного клапана и воздухоотводчика. Нужно учитывать, что вода занимает не весь объем бака, а всего лишь его часть. Остальной объем занимает воздух под давлением. Давление воздушной подушки может регулироваться с помощью ниппеля 7, закрытого пластиковой крышкой 8.

Работа насоса заключается в подаче воды под давлением в трубы и, естественно, в грушу гидроаккумулятора. Мембрана — груша расширяется, при этом воздух, окружающий мембрану, начинает сжиматься. Наполнение бака водой происходит пока давление воды не уравняется давлением воздуха. Если водопотребления нет, давление в системе выравнивается с давлением отключения реле. Насос выключается. При открытии крана вода, вытесняемая давлением воздуха, поступает в первую очередь из гидроаккумулятора и только когда давление в системе упадет ниже установочного, реле давления включает в работу насос.

Подключение гидроаккумулятора в систему водоснабжения своими руками


Автономная система водоснабжения – сложное техническое сооружение, требующее использования внушительного ряда технических средств. Чтобы автоматизировать работу насосного оборудования и подачу воды в краны, понадобится установка гидробака. Согласитесь, не каждый домовладелец знает, как его устанавливать, да и вообще, что это за устройство.

Мы подробно расскажем, как производится подключение гидроаккумулятора в систему водоснабжения. Детально разберем, что необходимо для его монтажа, в каких независимых водопроводных сетях он используется, с каким оборудованием и как может эксплуатироваться.

Осуществленная согласно нашим рекомендациям установка гидравлического бака предотвратит множество вероятных проблем: защитит бытовую технику, минимизирует действие гидроудара. Для оптимизации восприятия представленную информацию дополняют фото, схемы и видео.

Содержание статьи:

Устройство и назначение гидробака

Гидроаккумулятор, который иначе называют гидробаком или мембранным баком, – это герметичная металлическая ёмкость, в которую помещена частично заполненная водой эластичная мембрана грушевидной формы. По сути, мембрана, помещенная в корпус гидробака и прикрепленная к его корпусу фланцем с патрубком, разделяет его ёмкость на две части: водную и воздушную.

При увеличении объема воды в гидробаке естественным образом уменьшается объем воздуха. В результате повышается давление в поставляющей воду системе. При достижении заданных пользователем параметров давления оно , которое планомерно подает команду на отключение насоса.

Галерея изображений

Фото из

Гидроаккумулятор — металлический бак, внутрь которого помещена эластичная мембрана в форме колбы, заполняемая водой. Остаток пространства между колбой и корпусом занимает газ или воздух

Изменение объема воды в колбе и воздуха в корпусе фиксируется автоматикой, которая контролирует циклы включения/отключения насоса

Гидробаки используются как в составе систем с погружным насосом, так и в паре с поверхностным. В обоих случаях они требуются для автоматизации работы системы

Гидроаккумуляторы устанавливают либо на входе водопровода в дом, либо возле водозаборной скважины непосредственно в кессоне

На входном патрубке в гидробак устанавливается обратный клапан, предотвращающий отток воды обратно в выработку после остановки насоса

Оптимальным местом для установки манометра считается выход из гидроаккумулятора, требующийся для контроля параметров давления в системе

В обустройства дач и небольших загородных домов используются гидробаки емкостью от 12 до 24 л. Для работы в паре с погружными насосами объем берут больше, рассчитывают исходя из технических характеристик конкретного агрегата

Если для нормальной работы автономной системы требуется резерв воды в 300 — 500л, то схему с гидробаком дополняют большим гидроаккумулятором, готовым или самодельным накопителем

Компоненты системы водоснабжения с гидробаком

Гидоаккумулятор в составе насосной станции

Установка гидроаккумулятора в кессоне

Гидроаккумулятор на вводе водопровода в дом

Расположение обратного клапана

Место установки манометра

Стандарты объема гидроаккумулятора

Система для резервного запаса воды

Корпус бака выполнен из металла, но вода не контактирует с ним: она заключена внутрь камеры-мембраны, которую производят из прочного резинового бутила.

Этот стойкий к воздействию бактерий материал помогает воде не терять тех качеств, которые предъявляются к ней санитарными и гигиеническими нормами. Питьевая вода при взаимодействии с резиной сохраняет все свои замечательные свойства.

Вода в попадает через присоединительный патрубок, снабженный резьбовым соединением. Напорный патрубок и выход соединительного водопровода должны, в идеале, иметь одинаковые диаметры. Это условие позволяет избегать дополнительных гидравлических потерь внутри трубопровода системы.

В тех гидроаккумуляторах, которые входят в состав бытовых систем водоснажбения, используется воздух. Если же это устройство предназначено для производственного применения, в него закачивают газ

Чтобы регулировать давление внутри устройства, в воздушной камере предусмотрен специальный пневмоклапан. Воздух накачивается в отведенный для него отсек через обычный автомобильный ниппель. Кстати, через него можно не только докачать воздух, но, при необходимости, и стравить его излишки.

Закачивают воздух внутрь мембранного бака, используя для этой цели компактный автомобильный или простой велосипедный насос. При поступлении воды в резиновую грушу сжатый воздух оказывает её напору сопротивление, не позволяя мембране прорваться. Давление внутри гидроаккумулятора тоже регулируется с помощью сжатого воздуха.

Гидроаккумулятор состоит из следующих элементов: 1 – металлический корпус, 2 – резиновая мембрана, 3 – фланец, снабженный клапаном, 4 – ниппель, через который можно закачать воздух, 5 – воздух под давлением, 6 – ножки, 7 – установочная платформа для насоса

Принцип работы гидроаккумулятора

Если система только что смонтирована, большую часть внутреннего объёма гидроаккумулятора занимает та камера, которая предназначена для воздуха.

Поступая в грушевидную мембрану через патрубок, вода сжимает воздух. Это происходит вплоть до той поры, пока не будет достигнуто предусмотренное давление. Затем реле отключает насос. Работу реле можно отрегулировать.

Когда мы открываем вентиль и используем воду для своих нужд, происходит разгерметизация системы. Воздух, надавливая на мембрану, помогает воде выйти из ёмкости. Этот процесс будет происходить, пока давление в системе не снизится до установленного минимума -1,5 атм. В этот момент должен заработать насос, нагнетающий в бак воду.

Как известно, в воде тоже есть растворенный воздух. Когда он скапливается внутри мембранного мешка, работа гидроаккумулятора ухудшается, поэтому его необходимо стравить. На некоторых моделях для этой цели имеется специальный клапан. Если клапана нет, нужно раз в 1-3 месяца устраивать мембранному баку профилактику.

Важно правильно вмонтировать . Тогда при его поломке или при проведении на нем профилактических работ, устройство можно будет легко разобрать так, чтобы не пришлось полностью сливать воду из всей системы.

При открывании любого водопроводного крана системы объем воды в баке уменьшается, как следствие падает давление. Падение давления до заданного значения фиксирует реле, которое запускает в работу насос (+)

Роль в водопроводной сети

Казалось бы, устройство просто пропускает через себя воду. Можно было бы обойтись и без него? На самом деле именно с помощью гидробака в системе водопровода сохраняется стабильное давление.

Водяной насос при его наличии включается не так часто, что позволяет экономно использовать его эксплуатационный ресурс. Кроме того, система извлечения и транспортировки воды надежно защищена от гидроударов.

Если по какой-либо причине напряжение в электросети пропадёт, небольшой «аварийный» запас воды в баке поможет решить первоочередные хозяйственные задачи.

Уточним перечень преимуществ, которые обеспечивает это довольно простое устройство:

  • Преждевременный износ насоса. В мембранном баке имеется некоторый запас воды. Она удовлетворяет первоочередные потребности владельцев коттеджа. И только тогда, когда запас иссякнет, включится насос. Следует отметить, что все насосы имеют норму включений на протяжении часа. При наличии гидроаккумулятора этот показатель не будет превышен, и агрегат прослужит дольше.
  • Стабилизация давления в системе. Если одновременно включить два крана, например, в ванной комнате и на кухне, перепады напора могут повлиять на температуру воды. Это очень неприятно, особенно для тех домочадцев, которые в этот момент принимают душ. Благодаря гидроаккумулятору таких недоразумений можно избежать.
  • Гидроудары. Эти явления, которые способны навредить трубопроводу, могут возникать в момент включения насоса. С гидробаком риск возникновения гидроудара практически исключен.
  • Запас воды. В загородном доме проблема водоснабжения стоит особенно остро. Если произошло внезапное отключение электричества, и насос не может выполнять свои функции, то для решения неотложных проблем больше не надо хранить запас воды в ведре или другом резервуаре. В ёмкости гидроаккумулятора она имеется и регулярно обновляется.

Очевидно, что наличие этого устройства в независимой от централизованных сетей системе водоснабжения не случайно. Оно необходимо и полезно.

Гидроаккумулятор в контуре водоснабжения выполняет ряд значимых функций: защищает технику от гидроударов, обеспечивает запас воды, формирует условия для автоматизации ее забора

Варианты мембранных замкнутых емкостей

Мембранные баки эксплуатируются в составе трубопроводов, смонтированных для разных целей, в числе которых:

  • Холодное водоснабжение. Бак применяется для накопления и подачи холодной воды, защищает разнообразные бытовые приборы от гидроударов при изменении давления в системе. Продлевает срок эксплуатации насосов путем сокращения количества их включений.
  • Обеспечение горячей водой. Используемое при этом устройство должно успешно работать в высокотемпературном режиме.
  • Отопительные системы. Такие баки называют расширительными. Они функционируют в составе закрытых отопительных систем и являются их важными составными частями.

В зависимости от конфигурации, гидробаки бывают горизонтальными и вертикальными. Впрочем, принцип их работы не зависит от конфигурации.

Гидроаккумуляторы, предназначенные для включения в систему водоснабжения, окрашивают в синий цвет, а те, которые работают в отопительной схеме, – красные. Эти два вида мембранных баков имеют и некоторые конструктивные отличительные особенности, что хорошо видно на представленной схеме (+)

Особенностью можно назвать наличие специального клапана для стравливания воздуха в верхней части вертикальных моделей, объём которых превышает 50 литров. Этот воздух, как уже говорилось выше, скапливается в верхней части камеры по мере работы устройства. Поэтому присутствие в этом месте стравливающего клапана – вполне обоснованная мера.

Если стравить воздушные массы необходимо при эксплуатации горизонтальных моделей, то для этой цели используется слив или отдельный кран, расположенный за мембранным баком. Чтобы вывести воздух из устройств небольшого размера, придется полностью слить из него воду.

Поскольку вертикальные и горизонтальные модели одинаково эффективны и функциональны, то выбирать подходящее устройство следует, исходя из габаритов помещения, в котором оно будет располагаться. Какая модель лучше впишется в помещение, ту и берут.

Кроме конструкционных особенностей и разного предназначения, баки могут отличаться ещё и своей ёмкостью: на этом фото представлены гидроаккумуляторы различных объёмов, конструкций и предназначения

Схемы подключения гидроаккумулятора

Это устройство может быть подключено к системе водопровода разными способами. Выбор схемы подключения гидроаккумулятора зависит от того, в каком качестве он будет использован, и какие функции на него предполагается возложить. Рассмотрим те схемы подключения, которые наиболее популярны.

Стандартный вариант с поверхностным насосом

Самым распространенным вариантом автономного водоснабжения с гидроаккумулятором является тандем с поверхностным насосом. В этом случае гидробак может быть частью , собранного производителем в заводских условиях, или отдельной составляющей, размещенной рядом с насосом в кессоне или в отапливаемом подсобном помещении.

Перед гидроаккумулятором ставят обратный клапан, чтобы исключить изменение направление потока, после него располагают реле давления, реагирующее на изменение напора, и манометр для отслеживания рабочих параметров.

Для нормального подключения к водопроводному контуру гидробак обычно оснащают угловым патрубком, который подсоединяется к фланцу:

Галерея изображений

Фото из

Подготовка гидробака к подключению

Установка уголка на выходной патрубок

Накрученный на патрубок фитинг

Устанавливаемые на выходе устройства

Использование с повысительной насосной станцией

Насосный агрегат повысительного типа используется для постоянного поддержания и регулирования давления в трубопроводах с активным водопотреблением. Обычно на таких станциях имеется насос, который работает в постоянном режиме.

Если возникает потребность в подключении дополнительных насосов, гидроаккумулятор помогает компенсировать возникающие при этом в системе скачки давления.

В составе системы водоснабжения повысительной насосной станции гидроаккумулятор исполняет функцию аварийного источника водоснабжения и своеобразного демпфера, предотвращающего гидроудары в случае подключения дополнительных мощностей

Такая же схема используется, если подача электроэнергии на повысительные насосы в системе нестабильна, а водоснабжение, тем не менее, должно быть бесперебойным. В период отключения электричества используется тот запас воды, который содержится внутри гидроаккумулятора. По сути, мембранный бак играет в этот период роль запасного источника водоснабжения.

Чем мощнее насосная станция, тем масштабнее задачи, которые на неё возлагаются. Она должна поддерживать , большим должен быть и объём её гидроаккумулятора.

Применение в схемах с погружным насосом

Чтобы максимально продлить срок службы погружного насосного агрегата, количество его включений в течение часа должно соответствовать заявленным техническим характеристикам прибора. Обычно этот показатель порядка 5-20 раз.

Если давление в водопроводной сети падает, при достижении им минимального значения срабатывает реле, включающее насос, подающий воду. При максимальных значениях давления реле отключается, подача воды прекращается.

Если в схеме водоснабжения присутствует погружной насос, то гидроаккумулятор продлит срок его службы, поскольку ему не придется включаться и отключаться, если затраты потребителей воды будут незначительными

Если система водоснабжения автономная и маленькая, даже небольшой объём водопотребления может запустить насос. В этом случае эксплуатация насоса будет малоэффективной. А сам прибор прослужит не так долго, как хотелось бы его владельцу.

Тот запас воды, который содержится в мембранном баке, спасет ситуацию. Кроме того, он не допустит скачка давления в тот момент, когда начнет свою работу погружной насос.

Чтобы выбрать гидробак подходящего объёма, нужно знать следующие характеристики: мощность и частоту включения насоса, предполагаемый расход воды в час и высоту установки устройства.

Если в схеме подключения фигурирует , то гидроаккумулятор выполняет в ней функции расширительного бака. Если воду нагреть, то её объём увеличиться. Она расширится. Для замкнутого пространства, каким и является система водоснабжения, такой процесс мог бы привести к разрушительным последствиям, если бы не гидробак.

В схеме с накопительным водонагревателем гидроаккумулятор используется в качестве расширительного бачка, спасающего систему от разрывов, поскольку несжимающаяся вода отлично расширяется при нагревании

Для включения в эту схему необходимо выбирать гидроаккумулятор, учитывая следующие его характеристики: предельная температура нагреваемой воды и максимально допустимое давление в водопроводной системе.

Выбор мембранного бака со знанием дела

Гидробак – ёмкость, основным рабочим органом которой является мембрана. От её качества зависит, сколько времени прослужит устройство от момента подключения до первого ремонта.

Лучшими считаются изделия из пищевой (изобутированной) резины. Металл корпуса изделия важен только для расширительных баков. Там же, где вода содержится в груше, характеристики металла не имеют решающего значения.

Если не обратить особого внимания на толщину фланца вашего приобретения, то уже через год-полтора, а не через 10-15 лет, как вы планируете, придется покупать совершенно новое устройство или, в лучшем случае, менять сам фланец

Особое внимание при выборе устройства стоит сосредоточить на фланце, который, как правило, изготавливают из оцинкованного металла. Толщина этого металла очень важна. При его толщине всего в 1 мм срок эксплуатации изделия составит не больше 1,5 года, так как в металле фланца непременно образуется прореха, которая выведет из строя всё устройство.

При этом гарантия на бак составляет всего-то год при заявленном сроке эксплуатации в 10-15 лет. Так что дыра появится как раз после истечения гарантийного срока. И запаять или заварить тонкий металл будет невозможно. Можно, конечно, попытаться отыскать новый фланец, но, скорее всего, понадобится новый бак.

Чтобы избежать подобных напастей, следует искать бак, фланец которого сделан из нержавейки или из толстой оцинковки.

Подключение гидроаккумулятора к контуру водоснабжения

Как стало понятно из всего написанного выше, мембранный бак – это не просто ёмкость с водой. Это специальное устройство, вовлеченное в непрерывный рабочий процесс. Поэтому и процедура его установки совсем не так проста, как это может показаться. Закреплять его следует очень тщательно, учитывая факторы вибрации и шума.

Необходимо закреплять гидроаккумулятор на поверхности с помощью резиновых прокладок, чтобы уменьшить уровень шума при его работе и сократить влияние вибраций на само устройство

К полу его крепят с применение резиновых прокладок, а к трубопроводу – с помощью переходников из резины. И ещё следует учесть, что диаметр подводки не может уменьшаться на выходе гидросистемы.

С новым баком следует обращаться особенно осторожно, заполняя его водой под слабым напором. Мембрана от долгого хранения могла слежаться. Резкая струя воды может её повредить и даже полностью вывести из строя. Правильнее удалить из груши мембраны весь воздух до того, как вы приступите к заполнению её водой. Место для установки гидроаккумулятора должно быть выбрано с учетом его доступности.

Процесс подключения гидроаккумулятора производится в стандартной последовательности:

Галерея изображений

Фото из

Шаг 1: Ввод водопровода через цоколь или фундамент

Шаг 2: Ввод силового кабеля погружного электронасоса

Шаг 3: Настройка гидроаккумулятора после сборки линии

Шаг 4: Подсоединение гидробака к системе водоснабжения

Шаг 5: Расположение второго гидробака в кессоне

Шаг 6: Установка манометра для второго гидроаккумулятора

Шаг 7: Обратный клапан гидробака для ветки на полив

Шаг 8: Сливной кран водопроводной линии для полива

Правильная настройка нового устройства

Новый гидробак следует проверить на то, каков уровень его внутреннего давления. Предполагается, что он должен составлять 1,5 атм. Но в процессе транспортировки изделия от места производства до склада и во время хранения могла произойти утечка, снизившая на момент продажи этот важный показатель. Проверить давление можно, сняв колпачок на золотнике и выполнив замеры.

Для измерения давления можно использовать манометры разных видов:

  • Электронные. Это дорогие приборы. На результат их работы может оказать влияние температура и заряд батареи.
  • Механические. Выпускаются в корпусе из металла, называемые по-другому автомобильными. Если этот прибор успешно прошел проверку, то лучше него не найти. Чтобы получить наиболее точное значение, поскольку измерять нужно будет всего-то 1-2 атм., лучше купить прибор с большим количеством делений на измерительной шкале.

Недорогие насосные станции и насосы-автоматы чаще всего укомплектовываются манометрами в пластиковом корпусе. Погрешность в показаниях таких китайских моделей слишком велика.

Если в баке будет меньший объём воздуха, чем нужно, его место займет вода. Это повлияет на напор воды в водопроводе. При высоком давлении и напор постоянно будет высоким. Большее давление обеспечит меньший запас воды в мембранной груше, поэтому насосу придется чаще включаться. Если света не будет, запаса воды может не хватить на все нужды.

Поэтому-то иногда разумнее будет пожертвовать давлением для достижения других важных целей. Впрочем, ниже рекомендованных значений давление лучше не снижать, как и не превышать предельных характеристик. Недостаток давления может привести к контакту поверхности груши с корпусом бака, что нежелательно.

Для измерения давления можно использовать разные устройства, но оптимальным является относительно недорогой автомобильный манометр с корпусом из металла и достаточно развернутой шкалой результатов замеров

Оптимальное давление воздуха

Чтобы бытовая техника работала нормально, давление в гидробаке обязано находиться в интервале 1,4-2,8 атм. Для лучшей сохранности мембраны необходимо, чтобы давление в системе водопровода на 0,1-0,2 атм. превышало давление в баке. Например, если внутри мембранного бака давление составляет 1,5 атм., то в системе оно должно быть 1,6 атм.

Именно это значение и следует выставить на , которое работает совместно с гидроаккумулятором. Для одноэтажного загородного дома такая настройка считается оптимальной. Если же речь идёт о двухэтажном коттедже, давление придется повышать. Для расчета его оптимального значения применяют следующую формулу:

Vатм.=(Hmax+6)/10

В этой формуле V атм. – оптимальное давление, а Hmax – высота наиболее высоко расположенной точки водоразбора. Как правило, речь идёт о душе. Чтобы получить нужное значение, следует высчитать высоту нахождения лейки душа относительно гидроаккумулятора. Полученные данные вводятся в формулу. В результате расчета будет получено оптимальное значение давления, которое должно быть в баке.

Обратите внимание, что полученное значение не должно превышать максимально допустимые характеристики для прочих бытовых и сантехнических приборов, иначе они попросту выйдут из строя.

Если говорить о упрощенно, то её составными элементами являются:

  • насос,
  • гидроаккумулятор,
  • реле давления,
  • обратный клапан,
  • манометр.

Последний элемент используется для того, чтобы можно было оперативно контролировать давление. Постоянное нахождение его в системе водоснабжения не обязательно. Он может быть подключен только в тот момент, когда производятся тестовые замеры.

Как видите, именно на этой схеме манометр не отображен, но это не значит, что он вообще не нужен. Просто его включат в момент выполнения контрольных замеров

При участии в схеме поверхностного насоса, гидробак монтируют рядом с ним. Обратный клапан при этом устанавливают на всасывающем трубопроводе, а остальные элементы образуют единую связку, соединяясь между собой с помощью пятивыводного штуцера.

Пятивыводное устройство безупречно подходит для этой цели, поскольку имеет выводы различных диаметров. Входящий и исходящий трубопроводы и некоторые другие элементы связки могут соединяться со штуцером с помощью американок, чтобы облегчить профилактические и ремонтные работы на отдельных участках водопровода.

Впрочем, этот штуцер можно заменить кучей соединительных элементов. Но зачем?

На этой схеме порядок подключения хорошо виден. Когда происходит подключение штуцера к гидроаккумулятору, необходимо удостовериться в герметичности соединения

Итак, к насосу гидроаккумулятор подключается следующим образом:

  • один дюймовый вывод присоединяет сам штуцер к патрубку гидробака;
  • к выводам на четверть дюйма подключаются манометр и реле давления;
  • остались два свободных дюймовых вывода, к которым монтируются труба от насоса, а также разводка, идущая к потребителям воды.

Если в схеме работает поверхностный насос, то соединять с ним гидроаккумулятор лучше с помощью гибкого шланга, имеющего металлическую обмотку.

К тем частям, которые заканчиваются муфтами, будут присоединяться труба от насоса и разводка водопровода, которая пойдет к потребителям воды

К погружному насосу гидроаккумулятор подключается точно так же. Особенностью этой схемы является местоположение обратного клапана, не имеющее никого отношения к вопросам, которые мы сегодня рассматриваем.

Выводы и полезное видео по теме

Если после прочтения текста вам всё ещё непонятно, как именно следует подключать гидроаккумулятор, посмотрите это видео, в котором коротко, но предельно ясно отображены все нюансы этой процедуры.

Гидробак является важным составным элементом водопроводной системы. С его помощью решается целый комплекс задач. А выполнить своими руками грамотное подключение гидроаккумулятора, как оказалось, совсем не сложно. Зато преимущества от его использования бесспорны.

Появились вопросы во время ознакомления с представленной информацией? Есть полезные сведения или личный опыт, которым хотелось бы поделиться с нами и с посетителями сайта? Оставляйте, пожалуйста, комментарии в расположенном под статьей блоке.

Как определить ёмкость гидроаккумулятора?

Срок службы насосного оборудования в автономных системах водоснабжения не в последнюю очередь зависит от ёмкости гидроаккумулятора. Слишком маленький гидробак увеличивает нагрузку на насосное оборудование, а в слишком больших резервуарах застаивается вода. Как найти золотую середину и выбрать гидробак, который и насосы бережёт, и без воды при отключении электричества не оставит?

Как объём гидробака влияет на работу насосов?

Главное назначение гидроаккумуляторов – уравновешивать перепады давления при водоразборе или отключении электричества и защищать систему от гидроударов. Функцию управления автоматической насосной станцией обычно выполняет реле давления. Когда давление в системе приближается к верхнему пределу, реле прекращает подачу электроэнергии на насосное оборудование. С началом водоразбора давление в сети начинает падать; по достижении нижних пороговых значений подача электропитания возобновляется, и насосы снова принимаются качать воду.

Если в автоматизированной системе водоснабжения нет гидроаккумулятора, насос срабатывал бы всякий раз, когда кто-нибудь повернёт кран или воспользуется туалетом. Ни один электродвигатель не выдержит такого интенсивного режима эксплуатации. Чем мощнее насосная станция, тем меньше допустимая частота включений из-за риска перегрева:

  • насосы мощностью свыше 8 кВт выдерживают не более 10 повторных включений в час;
  • для насосного оборудования мощностью 5–10 кВт установлен лимит до 15 включений в час;
  • для маломощных насосов – до 20 включений.

Так или иначе, более 30 пусков в час – это уже критический уровень нагрузки, не предусмотренный конструкцией агрегата. Также на толерантность к повторным включениям влияют конструктивные особенности насосного оборудования: чем больше подвижных частей, тем реже должен включаться насос. Для уменьшения циклов включения и выключения насосов необходима установка гидроаккумулятора для создания резервных запасов воды.

Внутренняя ёмкость гидробака заполнена баллонной мембраной, в которую поступает вода. Во время водоразбора воздух, воздух, заполняющий пространство между мембраной и внутренними стенками бака, вытесняет воду в сеть. В результате изменение давления в системе происходит плавно, ограничивая количество кратковременных включений и выключений. Иными словами, насосная станция включается и выключается столько раз, сколько позволит объём гидроаккумулятора.

Как определить ёмкость гидроаккумулятора?

Для расчёта оптимального объёма гидробака разработаны формулы, учитывающие основные характеристики системы:

  • суточный расход воды;
  • допустимое число рабочих циклов в час;
  • мощность насосного оборудования;
  • настройки реле давления.

На практике все намного проще – ассортимент большинства магазинов ограничен тремя линейками стандартных типоразмеров: 

  • от 20 до 24 литров и меньше;
  • 50– 60 литров;
  • 100 и более литров.

Компактные модели ёмкостью до 20–24 литров рассчитаны на насосные станции мощностью до 0,75 кВт с расходом 2–2,5 м3/час, но для небольшой семьи из двух-трёх человек увеличивать расход нет резона. Разумеется, насосы при этом включаются чаще, чем в случае установки гидробака среднего объёма, но так как резких колебаний давления не возникает, низкие нагрузки компенсируют частые включения и выключения. Чаще всего малогабаритные гидроаккумуляторы входит в комплектацию маломощных установок водоснабжения, так что все риски и выгоды за нас уже подсчитал производитель.

Насосное оборудование производительностью 1,8 м3/час и гидробак на 24 литра – типовая комбинация для внутренних сетей частных домов с тремя водоразборными точками, но без внутреннего санузла. При увеличении число точек водоразбора достаточно купить еще один гидроаккумулятор того же объёма и установить его в любом участке системы.

Гидроаккумуляторы ёмкостью 50–60 литров предназначены для сетей с расходом 2,5–3,5 м3/час и мощностью насосного оборудования до 1,5 кВт. Резервный запас воды составляет от трети до половины бака – вполне достаточно для удовлетворения нужд 4–8 человек.

Как правило, гидробаки на 50 литров устанавливают в бытовых системах с четырьмя и более водоразборными точками, где нет ванн, унитазов и тому подобного оборудования, потребляющего большое количество воды. Если в доме оборудован санузел, объём гидроаккумулятора рассчитывают по методике UNI 9182.

В продаже имеются и более массивные гидроаккумуляторы на 80 литров, которые вмещают до 5 литров воды сверх минимального резерва, но стоит ли игра свеч? Выигрыш не сказать что большой, а цена агрегата ощутимо выше.

Покупка гидробака на 100 и более литров оправдана лишь в том случае, если расход воды превышает 5 м3/час. Для этого в доме должно одновременно проживать не менее 10 человек. Прежде чем покупать гидроаккумулятор на 100 литров, учтите, что не всякая скважина обладает достаточной продуктивностью. Кроме того, для установки массивного бака требуется немало места – готовы ли вы поступиться квадратными метрами?

Также гидроаккумуляторы на 200 литров и более пользуются спросом в регионах с частыми перебоями электроснабжения – их используют как накопители воды на случай отключения электричества. Но если запас воды намного превосходит потребности жильцов, во время «Ч» вода в баке может оказаться непригодной для питья и приготовления пищи. Для длительного хранения воды больше подходит открытый водонакопитель.

Чем больше объём – тем больше проблем

Массивные габариты заметно осложняют сервисное обслуживание гидроаккумуляторов. В частности, для гидробаков ёмкостью от 100 литров актуальна проблема удаления воздуха, который накапливается в мембране и образует пробки, расстраивающие работу агрегата.

Для стравливания лишнего воздуха в верхней части вертикальных гидробаков ёмкостью от 100 литров устанавливают воздухоотделительные клапаны. У горизонтальных моделей за выведение воздушных пузырьков отвечает отдельный сегмент трубопровода, укомплектованный выводным ниппелем, сливом и шаровым краном. Для обеспечения бесперебойного функционирования водопровода воздух из бака следует выпускать не реже, чем раз в месяц.

У более компактных гидроаккумуляторов воздух удаляется из мембран во время полного опорожнения резервуара. В силу большего количества рабочих циклов воздушные пробки не успевают образовываться. Для надёжности можно периодически спускать воздух через кран, расположенный в непосредственной близости от бака. Отключив электропитание насосов, позвольте воде полностью стечь, затем закройте кран и включите насосы. Когда гидробак наполнится водой, повторите процедуру.

Вместительность гидробака – далеко не единственный параметр, который следует учитывать, решая увлекательную задачу поддержания напора в сети. Не менее важно правильное расположение гидроаккумулятора: рекомендуется устанавливать бак как можно ближе к насосу. Особенности монтажа систем водоснабжения и условия эксплуатации систем также вынуждают пересмотреть стандартные рекомендации по подбору гидробака.

Если у вас есть какие-то вопросы и сомнения, не стесняйтесь обращаться за помощью к специалистам.

Аккумуляторы — BLACOH Fluid Control

BLACOH Аккумуляторы

повышает производительность системы в различных приложениях в различных отраслях.

Аккумуляторы представляют собой резервуары для хранения жидкости, которые удерживают жидкость под давлением и обычно используются в гидравлических системах для хранения жидкости в качестве энергии, выделяемой по запросу.При использовании в гидравлических контурах и машинах их иногда называют гидроаккумуляторами или гидропневматическими аккумуляторами . Аккумуляторы также используются для устранения пульсаций для плавного потока жидкости и защиты систем от гидравлических ударов. Самая популярная конструкция имеет внутренний баллон, который действует как разделитель между хранимой жидкостью и зарядом сжатого газа.

Аккумуляторы

используются в различных приложениях в различных отраслях промышленности для повышения производительности системы и снижения эксплуатационных расходов.

BLACOH предлагает полную линейку гидроаккумуляторов, специально разработанных для рынка гидроэнергетики, с однокорпусной конструкцией для максимальной безопасности при работе с высоким давлением.

Модели с мочевым пузырем, диафрагмой и поршнем
Нижняя и верхняя части ремонтируемые
По результатам испытаний 1. 5-кратное максимальное давление
Построен в соответствии со стандартами ASME и большинством международных норм для сосудов под давлением

Аккумуляторы BLACOH доступны в различных размерах и из материалов, подходящих для самых требовательных приложений. *

ПРИМЕЧАНИЕ. Некоторые модели аккумуляторов, предлагаемые BLACOH, могут быть произведены партнерами из Северной Америки или Европы.Свяжитесь с менеджером по продажам BLACOH для уточнения деталей.

Сети водоснабжения и водоснабжения — LOW-TECH MAGAZINE

Гидроаккумулятор. Картина: Лес Чатфилд.


«Использование воды — это тема, о которой как ни странно пренебрегают в инженерной литературе.Как романтический или популярный аспект инженерной мысли, гидравлическая энергия никогда не привлекала внимания общественности, как паровой двигатель, локомотив или даже двигатель внутреннего сгорания «.

Ян Макнил, Hydraulic Power , 1972


Теоретические основы гидравлической передачи энергии были заложены в 1647 году французским вундеркиндом Блезом Паскалем. С помощью экспериментов он обнаружил, что вода, в отличие от воздуха, практически несжимаема и передает давление одинаково во всех направлениях.

Значение «гидростатического парадокса» было продемонстрировано в «машине умножения сил» Паскаля, показанной ниже. Он состоит из двух вертикальных цилиндров, соединенных между собой трубой. Вся система заполнена водой и герметично закрыта. Один цилиндр содержит плунжер малого диаметра, а другой цилиндр содержит плунжер с площадью поперечного сечения в 100 раз больше.

Станок для умножения сил.

Pascal продемонстрировал, что если на маленький поршень поместить груз, он сможет поднять груз, помещенный на верх большого поршня, который в 100 раз тяжелее.Таким образом, машина Паскаля позволяла умножать силы — в приведенном выше примере отношение выходного усилия к входному усилию составляет 100 к 1. Другими словами, вы можете получить выходное усилие в 100 кг для входного усилия всего 1 кг.

Машина для умножения сил

Умножение силы было совсем не новым в 1600-х годах. Более простые устройства, такие как шкивы, зубчатые передачи, кабестаны, лебедки и беговые колеса — все вариации рычага, которому 7000 лет, — также могут получать высокое выходное усилие из небольшого входного усилия.Например, римляне строили краны с механическим преимуществом до 70 к одному, что означало, что один человек, приложив усилие всего 25 кг, мог поднять вес 1,75 тонны.

Однако гидравлическая версия рычага имеет одно выдающееся преимущество перед более ранними механизмами: потери на трение очень малы и не зависят от механического преимущества. Следовательно, возможный коэффициент размножения почти бесконечно больше, и оба поршня могут находиться на значительном расстоянии друг от друга — примерно до 25 км, как мы увидим.


В гидравлике потери на трение не зависят от механического преимущества, поэтому возможный коэффициент увеличения силы почти бесконечен


Увеличение силы может быть увеличено либо путем увеличения соотношения диаметров обоих поршней, либо путем приложения большей мощности к меньшему поршню. Как и в случае с более ранними механизмами, то, что достигается за счет механического преимущества, теряется в соотношении скоростей.

Если небольшое гидравлическое усилие преобразуется в большее усилие, его скорость работы будет уменьшена точно в обратной пропорции, потому что пройденное расстояние увеличивается в той же пропорции, что и сила.Например, человек, нажимающий на маленький поршень на 10 сантиметров, переместит другой поршень вверх только на 1/100 этого расстояния.

Следовательно, в закрытой системе более тяжелый груз можно было поднимать только на очень ограниченное расстояние в зависимости от длины плунжера. Однако этот предел снимается, когда в систему добавляется больше воды, и меньший поршень, вместо того, чтобы опускаться только один раз, совершает несколько ходов — другими словами, когда он работает как насос. В этом случае больший поршень будет продолжать подниматься.

Гидравлический пресс

Паскаль смог доказать свою точку зрения только косвенно, поскольку доступные в то время материалы были недостаточно прочными, чтобы выдержать давление. Потребовалось еще полтора столетия, прежде чем умножение гидравлической силы стало применяться на практике. Первым его применением было не подъемное устройство, а наоборот: гидравлический пресс, который создает сжимающую силу.

Обычный шнековый пресс того времени, мало развитый с тех пор, как римляне использовали его для прессования оливок и винограда, требовал больших усилий для работы, имел большие потери энергии на трение (+ 80%) и не мог выдерживать нагрузку более 25 тонн. нагрузка.(Винт, который преобразует вращательное движение в линейное движение, по сути представляет собой наклонную плоскость, обернутую вокруг цилиндра).

Слева: Винтовой пресс. Изображение предоставлено Брюсом К. Саттерфилдом. Справа: гидравлический пресс.

Гидравлический пресс был изобретен в 1796 году английским слесарем и плотником Джозефом Брамах. Он был полностью основан на теоретической работе Паскаля. Гидравлический пресс Брамы, который приводился в движение ручным насосом, значительно увеличил нагрузку, которую мог испытывать человек.

Используя доступные в то время материалы, компания Bramah достигла общего отношения 1000: 1, что означает, что эффективная нагрузка в 60 тонн на подъемный поршень может быть уравновешена всего лишь 60 кг на рукоятке насоса. КПД гидравлического пресса составил более 90%.

Порты и верфи

Несмотря на исключительную пригодность гидравлики для работы с краном, в первой половине девятнадцатого века в этой области почти не было прогресса.Во многом это было связано с проблемой надежного и эффективного преобразования линейного движения гидроцилиндра во вращательное движение ствола крана или барабана. В течение первой половины девятнадцатого века обработка грузов в гаванях, верфях и железнодорожных станциях по-прежнему производилась с помощью кранов с приводом от человека, но потребность в более высоких и мощных кранах была огромной.

Начиная с 1830-х годов, железо стало использоваться в качестве материала для кораблестроения, параллельно с этим увеличились размеры кораблей.Обычные подъемные системы больше не подходили. В большинстве стран решение было найдено в паровом кране, который появился в 1850-х годах. Однако в портах и ​​верфях Британии появилась достойная альтернатива: водный кран.


В первой половине девятнадцатого века обработка грузов в портах, верфях и железнодорожных станциях все еще производилась с помощью кранов с приводом от человека


Британский инженер Уильям Армстронг начал проектировать и эксплуатировать мощные гидравлические краны в 1840-х годах.Полностью осознавая, что гидравлика лучше всего приспособлена для обеспечения медленного, устойчивого движения, Армстронг разработал метод подъема груза за один ход поршня или поршня, в достаточной степени увеличивая движение с помощью шкивов.

Однако его усилия были осложнены низким и неравномерным давлением в городской сети, которая была источником энергии для этих машин. Максимальная выходная мощность машины с водным приводом определяется давлением и расходом воды. В городских сети, давление воды было (и часто до сих пор) питается от водонапорной башни.Поскольку практическая высота водонапорной башни ограничено, поэтому это давление воды. Водонапорная башня высотой 50 м (165 футов) может создавать давление воды 70 фунтов на квадратный дюйм (psi).

Следовательно, единственный способ еще больше увеличить выходную мощность крана, работающего на воде из городской сети, — это увеличить расход воды. Однако это увеличивает потребление питьевой воды и увеличивает размер и стоимость труб, клапанов, цилиндров и других частей системы. Кроме того, если существует более высокий, чем средний спрос на питьевую воду от других пользователей, уровень воды в водонапорной башне будет падать, и так будет давление воды и выходная мощность машины.

Гидравлический аккумулятор

В 1851 году Армстронг предложил альтернативное решение, которое решило эти проблемы: гидроаккумулятор. Хотя он намного более компактный, чем водонапорная башня, он может производить обычное давление воды 700 фунтов на квадратный дюйм или выше — по крайней мере, в 10 раз больше давления воды в городской водопроводной сети. Это позволяло производить на порядок больше энергии без увеличения расхода воды и увеличения размеров компонентов системы.

Гидравлический аккумулятор

Армстронга представлял собой хитроумное устройство, в котором поршень или поршень оказывали давление на воду в вертикальном цилиндре.Поршень был нагружен балластом собственного веса, который обычно имел форму цилиндрического балластного контейнера, окружающего центральный цилиндр (изображение ниже, слева). Контейнер был заполнен щебнем, железным ломом или другим балластным материалом.

Гидравлический аккумулятор в гавани Бристоля. Википедия Commons. Гидравлический аккумулятор, Уолш-Бэй, Сидней. Источник: NSW HSC Online.

Для давления воды 700 фунтов на квадратный дюйм балласт составлял около 100 тонн, воздействуя на гидроцилиндр диаметром около 45 см с вертикальным ходом от 6 до 7 метров.В гидроаккумуляторах другого типа использовалась прямоугольная плита для поддержки балласта кирпичной кладки (изображение вверху справа) или стальных плит. Гидравлические аккумуляторы могут быть установлены на открытом воздухе или в специально спроектированном здании.


В сравнении с водонапорной башней, гидравлический аккумулятор может поставить в десять раз больше мощности, и поддерживать равномерное давление по всей сети


Гидроаккумулятор работает так же, как водонапорная башня.В центральном цилиндре внизу имеется впуск и выпуск воды. Воду из доков можно было закачивать через входное отверстие паровым насосом, поднимая поршень, в то время как ее можно было вытолкнуть через выход в магистраль для распределения, опуская поршень.

Энергия накапливалась при движении тарана вверх и восстанавливалась при его спуске. Скорость откачки паровой машины регулировалась в зависимости от уровня воды в аккумуляторе либо автоматически с помощью механических соединений, либо с помощью человека.

В отличии от водонапорной башни, однако, аккумулятор может поддерживать равномерное давление по всей системе, независимо от объема воды в цилиндре, потому что вес балласта, а не вес воды, который создает давление — Другими словами, гидроаккумулятор выдает давление по нагрузке, а не по высоте.

Гидравлический аккумулятор с эффективностью зарядки / разрядки выше 98% и отсутствием саморазряда был чрезвычайно энергоэффективным устройством.

Заводское оборудование с водным приводом

Введение гидроаккумулятора имело два важных эффекта. Во-первых, значительно расширился ассортимент машин с гидравлическим приводом. Водяные двигатели, подключенные к городской сети, были бытовыми приборами и инструментами мастерских. Но Армстронг и другие инженеры адаптировали воду под высоким давлением для различных промышленных применений, требующих большой мощности, таких как ковка, штамповка, штамповка, отбортовка, резка и клепка (предшественник сварки).

Клепальный станок с гидравлическим приводом.

В портах вода под высоким давлением не только приводила в действие краны и подъемные машины, перемещающие грузы в доках и на складах, но также запирала ворота, поворотные мосты, лодочные подъемники и гравийные доки. На железнодорожных станциях гидравлическая передача энергии использовалась для обработки грузов и перемещения железнодорожных вагонов (с помощью гидравлических шпилей), а также для управления поворотными платформами, лифтами и механизмами перемещения. Все эти применения гидравлической энергии были бы невозможны из-за низкого и неравномерного давления в городской сети.

Чтобы составить представление о важности гидравлической энергии, достаточно еще раз взглянуть на эволюцию подъемных устройств. В 1586 году обелиск весом 344 тонны был перемещен между площадями Рима. Доменик Фонтана, мастер-строитель Ватикана, возвел обелиск с помощью 40 кабестанов, обработанных 400 мужчинами и 75 лошадьми. В 1878 году Джон Диксон поднял еще один обелиск — иглу Клеопатры весом 209 тонн — с помощью четырех гидравлических подъемных домкратов, которыми управляли четыре человека.

Электросети и водопроводы

Во-вторых, гидроаккумулятор позволял эффективно передавать мощность на большие расстояния.Для трубопровода диаметром 30 см падение давления в водопроводной сети составляет около 10 фунтов на квадратный дюйм на милю, и эта цифра не зависит от давления воды. Таким образом, если вы пропускаете воду с давлением 70 фунтов на квадратный дюйм на расстояние 7 миль (12 км), вся энергия теряется. Но если вы пропускаете воду на такое же расстояние с давлением 700 фунтов на квадратный дюйм, давление воды остается 630 фунтов на квадратный дюйм, что сводится к эффективности передачи 90%.

Высокая эффективность передачи воды под высоким давлением привела к строительству по меньшей мере дюжины общественных водопроводных сетей с аккумуляторным накопителем, половина из которых находится в Великобритании, в которых паровые машины, расположенные в центре, перекачивают воду в гидроаккумуляторы, которые распределяют воду под высоким давлением по большой географический район.Один или несколько аккумуляторов могут быть установлены на каждой гидроэлектростанции, а другие могут быть расположены в стратегических точках вдоль магистрали подачи в качестве подстанций.


Идея действительно гидравлической электросети — аналога электрической сети, появившейся несколько позже — уже была изложена в патенте 1812 года Джозефом Брамахом, изобретателем гидравлического пресса.


С 1870-х по 1890-е годы гидравлические сети были установлены в ведущих промышленных городах Великобритании: Кингстон-апон-Халл, Лондон, Ливерпуль, Бирмингем, Гримсби, Манчестер и Глазго. Доковые и железнодорожные компании первыми внедрили эту технологию и на протяжении десятилетий оставались самыми важными пользователями.

Иллюстрации гидроаккумулятора, гидравлического крана и гидроподъемника.

Однако электрическая вода также использовалась для производственных процессов на фабриках, для работы лифтов в общественных, частных и коммерческих зданиях, а также для активации бытовых устройств и инструментов мастерских. Любой, кому посчастливилось проложить улицу, мог подключиться к общественной сети.Расход воды на электроэнергию был измерен, как это происходит сегодня с питьевой водой и электричеством.

Идея истинно гидравлической электросети — аналога электрической сети, появившейся несколько позже — уже была изложена в патенте 1812 года Джозефом Брамахом, изобретателем гидравлического пресса. Но Брама, который также задумал гидроаккумулятор и гидравлический кран, опередил свое время. Прошло еще шестьдесят лет, прежде чем его идеи были воплощены в жизнь Армстронгом и его современниками.

Лондонская гидравлическая энергетическая компания

Самая обширная гидроэнергетическая сеть была построена в Лондоне, оператором которой является «Лондонская гидравлическая компания». На пике развития компании в 1917 году пять соединенных между собой центральных электростанций перекачивали воду под высоким давлением примерно в дюжину гидроаккумуляторов и почти на 300 км водопроводных сетей, питая более 8000 машин и обслуживая большую часть города. В лондонских театрах и других культурных зданиях электрическая вода двигала полы, органные консоли, противопожарные шторы и сцены.Вода под напором работала водяными насосами и поднимала опоры Тауэрского моста.

Иллюстрация: план магистральных и насосных станций London Hydraulic Power Co., 1895 г.

Пожарные гидранты

также успешно обслуживались системой высокого давления, и несколько сотен из них были подключены к электросети London Hydraulic Power Company. Эти системы пожаротушения повышали давление в водопроводной сети за счет нагнетания в них небольшого количества воды под высоким давлением с помощью струйного насоса. Сама по себе вода под высоким давлением из гидравлической сети не могла быть подана в достаточном количестве, чтобы оказать влияние на большой пожар, в то время как в бытовой сети было достаточно воды, но недостаточное давление, чтобы достичь верхних этажей зданий.


В Лондоне пять соединенных между собой центральных электростанций перекачивают воду под высоким давлением в дюжину гидроаккумуляторов и почти 300 км водопроводных сетей, питая более 8000 машин и обслуживая большую часть города.


Еще одним замечательным применением воды под высоким давлением в Лондоне была система пылесоса Silent Dustman с водным приводом, которая появилась на рынке в 1910 году.Несколько крупных отелей были полностью «подключены» к этой системе: вода из городской сети использовалась в струйном насосе для создания вакуума в трубе, к которой должна была присоединяться система. Вдоль этих труб было несколько патрубков, к которым можно было прикрепить гибкие шланги. Таким образом грязь от подметальных машин втягивалась в гидравлическую трубу и уносилась в канализацию. Система, которая работала бесшумно и эффективно, оставалась в эксплуатации до 1937 года.

Одна из лондонских электростанций. Обратите внимание на башню справа, в которой находятся гидроаккумуляторы.

Однако в Лондоне гидроэнергетика, похоже, не оказала большого влияния на внутреннюю жизнь. В книге «Эпоха гидравлики » (1980) Б. Пью отмечает, что «возможно, это произошло из-за того, что в свое время домашняя рабочая сила была дешевой и в изобилии. Если бы действовали современные условия, то, возможно, все было бы иначе. поскольку возможности гидроэнергетики были не меньше, чем возможности электричества сегодня ».

Большинство коммунальных сетей водоснабжения поставляли воду под давлением от 700 до 800 фунтов на квадратный дюйм (от 48 до 55 бар), за исключением Манчестера и Глазго, где давление воды составляло 1120 фунтов на квадратный дюйм.В этих городах был большой спрос на мощность для гидравлических прессов, используемых для пакетирования, для чего требовалось более высокое давление.

Электросети за пределами Великобритании

Британские энергосистемы послужили источником создания подобных сетей в других местах: Антверпене в Бельгии, Буэнос-Айресе в Аргентине, Мельбурне и Сиднее в Австралии. В то время как австралийские системы напоминали системы в Великобритании (с 80 км магистралей, система в Мельбурне была второй по величине из когда-либо построенных), аргентинская система использовалась для перекачки сточных вод, а сеть в Антверпене была нацелена на комбинированное производство механическая сила и электричество.Последнее было попыткой преодолеть очень высокие в то время потери при передаче электроэнергии.

«Zuiderpershuis»: бывшая гидравлическая насосная станция в Антверпене. В башнях размещались гидроаккумуляторы.

В « Гидравлический век » Б. Пью пишет, что:

«Что касается передачи электроэнергии, то первые электрические станции сталкивались с теми же трудностями, что и гидравлические электростанции, их напряжение было аналогично рабочему давлению, а падение напряжения из-за сопротивления сети аналогично падению давления из-за трения трубы. Первые электрические электростанции общего пользования были станциями постоянного или постоянного тока, при этом генерирующее напряжение было лишь немного выше (из-за падения напряжения в кабелях), чем в помещениях потребителя, которое по соображениям безопасности должно было быть менее 250 вольт. Из-за ограничения напряжения область подачи, а также количество передаваемой мощности были ограничены ».


Сеть в Антверпене была нацелена на комбинированное производство механической энергии и электроэнергии


С 1865 года Антверпен использовал гидравлическую сеть высокого давления для питания кранов, мостов и шлюзов в гавани.К этому была добавлена ​​вторая сеть в 1893 году, которая распределяла воду под высоким давлением на электрические подстанции, разбросанные по всему городу (двенадцать по плану, но были построены только три). Там водяные турбины вырабатывали электроэнергию, которая распределялась в радиусе 500 м по подземным электропроводам — ​​примерно на таком расстоянии можно было эффективно распределять низкое напряжение.

Гидравлические краны в порту Антверпена. Изображение журнала Low-tech.

Система Антверпена, которая использовалась для управления уличным освещением, таким образом сделала в больших масштабах то же самое, что водяные двигатели, подключенные к динамо-машинам, сделали в небольших масштабах с водой из городской сети (см. Предыдущую статью).Около 66% гидравлической энергии было преобразовано в электричество. На пике сеть достигла длины 23 км с мощностью 1200 л.с. В Лондоне также было несколько мест, где потребители использовали небольшие электрические генераторы от гидравлической системы.

Электроэнергия против электричества

Прорыв в области высоковольтной передачи электроэнергии на рубеже веков сделал системы, подобные тем, что были в Антверпене, сразу же устаревшими. Электрогенерирующая часть сети исчезла в 1900 году.Производство воды под давлением для производства электроэнергии включает в себя четырехкратное преобразование энергии, что напрасно расточительно, если вы можете просто производить электроэнергию и эффективно ее транспортировать.

Расширение эффективных линий электропередачи остановило строительство других крупных сетей водоснабжения и водоснабжения до конца века. «Если бы эти системы были начаты несколькими годами ранее, они могли бы стать намного более популярными», — пишет Ян Макнил в книге « Hydraulic Power (1972) ». «Несколько лет спустя, и они, вероятно, вообще никогда не были бы построены».

Однако почти все коммунальные системы водоснабжения, которые были построены между 1870-ми и 1890-ми годами, оставались в эксплуатации до 1960-х и 1970-х годов, в конечном итоге с использованием электродвигателей вместо паровых для перекачки. Сеть водоснабжения, эксплуатируемая Лондонской гидравлической компанией, последней выжившей, работала до 1977 года. Большинство сетей водоснабжения общего пользования продолжали расти в течение первых десятилетий двадцатого века, достигнув своего расцвета в конце 1920-х годов.Фатальный спад наступил только тогда, когда в 1960-х и 1970-х годах заводы начали покидать города.


Если электричество является наиболее эффективным и практичным способом передачи и распределения энергии, то почему почти все водопроводные сети оставались в эксплуатации почти столетие?


Возникает два вопроса. Во-первых, почему электрическая вода не стала универсальным методом распределения энергии, о котором мечтали Джозеф Брама и Уильям Армстронг? Во-вторых, если электричество является наиболее эффективным и практичным способом передачи и распределения энергии, то почему почти все водопроводные сети оставались в эксплуатации почти столетие?

Преимущества электроэнергии

Как технология передачи электроэнергии, электрическая вода имеет три важных недостатка по сравнению с электричеством.Прежде всего, электричество можно эффективно транспортировать на гораздо большие расстояния. Гидравлическая передача энергии была (и остается) не менее эффективной, чем передача электроэнергии на расстояние от 15 до 25 км. Однако за пределами этих расстояний электрическая передача — явный победитель.

Гидравлические ворота в доке Гренландии в Лондоне, построенные в 1880-х годах. Изображение предоставлено Крисом Алленом.

Второй недостаток гидравлической трансмиссии состоит в том, что сложная распределительная сеть приводит к дополнительным потерям энергии.Каждый изгиб или изгиб сети увеличивает потери на трение. Чем сложнее сеть, тем менее она эффективна. Электрическая трансмиссия не имеет этой проблемы, по крайней мере, в незначительной степени. Потери на трение в водопроводе ограничивают количество машин, которые могут быть подключены к водопроводной сети, в то время как электричество можно разделить почти бесконечно.

Третье ограничение мощности воды — ограниченная пропускная способность гидравлической линии передачи. Вода под давлением может перемещаться по тонким трубам только со скоростью ходьбы, чтобы избежать чрезмерных потерь на трение.На более высоких скоростях потери на трение увеличиваются, поскольку квадрат скорости и эффективности быстро уменьшается даже на относительно коротких расстояниях. Это ограничивает скорость потока и, следовательно, мощность, которую может передать линия гидравлической передачи.

Используя трубу диаметром от 10 до 12 см — обычный размер в большинстве систем высокого давления в то время — гидравлическая линия передачи могла производить максимальную продолжительную мощность от 115 до 205 лошадиных сил (от 85 до 150 кВт). Линии электропередачи высокого напряжения аналогичного размера могут нести мощность на несколько порядков больше.

Преимущества Power Water

Однако ни один из этих недостатков не имел значения для рассмотренных нами электрических сетей водоснабжения. Все это были децентрализованные системы с машинами на расстоянии не более 15-25 км от источника питания. Во-вторых, поскольку оборудование с гидравлическим приводом в гаванях, железнодорожных станциях, на заводах и в зданиях характеризовалось медленным ходом и нечастым использованием, низкая скорость передачи механической воды не представляла препятствий.

За исключением кратковременной системы выработки электроэнергии в Антверпене, ни одна из водопроводных сетей типа Армстронг не снабжала энергией большое количество постоянно работающих машин.(Но обратите внимание на электрические сети среднего давления в Швейцарии). Наконец, поскольку в водопроводной сети работает относительно мало (но очень мощных) машин, потери на трение на изгибах и кривых в сети были ограничены.

Гидравлический насос, гидроаккумулятор и пресс. Источник: Portefeuille économique des machines, de l’outillage et du matériel, декабрь 1864 г., Bibliothèque nationale de France.

Ограничения гидравлической трансмиссии были хорошо известны в конце девятнадцатого века.Однако инженеры также осознали уникальные преимущества технологии, которые действуют и по сей день. Например, Роберт Занер, сторонник еще одной альтернативы электричеству, сжатого воздуха, написал в книге «Передача энергии сжатым воздухом » (1890 г.), что:

«Практическая несжимаемость воды делает гидравлический метод непригодным для регулярной передачи постоянного количества энергии. Его можно использовать с пользой только там, где движущая сила должна накапливаться и применяться через определенные промежутки времени, например, подъем тяжестей, ударные удары, ковка под давлением и другая работа прерывистого характера, требующая большого усилия на небольшом расстоянии.«

Гидравлическая трансмиссия

«превосходно адаптирована для использования с тяжелой техникой и оборудованием в операциях, требующих заметной концентрации мощности, возвратно-поступательного движения по прямой и прерывистого действия», — писал Луис Хантер в книге The Transmission of Power (1991). Основное преимущество гидроаккумулятора заключается в том, что он позволяет работать с машинами, которым требуется гораздо больше энергии, чем может обеспечить источник энергии — «умножение силы» Паскаля.


Ограничения гидравлической трансмиссии были хорошо известны в конце девятнадцатого века.Однако инженеры также осознали уникальные преимущества технологии, которые действуют и по сей день.


Когда требуется большая сила или крутящий момент, гидравлические силовые системы являются гораздо более компактным и энергоэффективным решением, чем механические или электрические приводы. И электродвигатели, и двигатели внутреннего сгорания часто нуждаются в механической передаче энергии (шестерни, цепи, ремни) для преобразования их высокой скорости вращения в более низкую скорость с более высоким крутящим моментом.

Точно так же гидравлические силовые системы легко производят линейное движение с помощью гидроцилиндров, в то время как электроэнергия требует дорогостоящих линейных двигателей или механических передач энергии, таких как зубчатые рейки в сборе.Гидравлическая и электрическая энергия дополняют друг друга в этом смысле: одним из ограничений передачи энергии и воды была относительная сложность преобразования линейного движения во вращательное.

Колеса

Pelton были наиболее очевидным выбором, но их высокая скорость вращения потребовала использования зубчатой ​​передачи для работы тихоходных механизмов. Целый ряд гидравлических двигателей типа барана был доступен для подачи мощности с участием ротационной переменной или медленной скоростью работы, но эти двигатели имели несколько преимуществ по сравнению с электрическими или механическими приводами.

Третье важное преимущество гидравлики состоит в том, что энергия всегда доступна в трубопроводах и гидроаккумуляторе, но когда нет спроса, нет потерь. Когда ни одна из машин в водопроводной сети не работала, гидроаккумуляторы поддерживали давление в линиях без использования энергии. Это преимущество особенно актуально, когда машины используются с перерывами.

Гидравлика Сегодня

Гидравлический привод все еще используется сегодня, особенно в тяжелом промышленном оборудовании, которое требует медленного, но мощного линейного движения, а также в мобильной строительной технике, такой как экскаваторы.Однако гидроаккумулятор с увеличенным весом и водопроводные сети исчезли.

Жидкость под давлением больше не вода, а масло, смешанное с присадками. (Растительное масло использовалось в качестве гидравлической среды в 19 веке). В отличие от воды масло не замерзает и не вызывает коррозии. Однако это делает гидравлическую энергию более дорогой и, очевидно, не позволяет отработанной жидкости попадать в канализационную сеть, доки или море.

Частично из-за использования масла возник автономный гидравлический силовой агрегат, состоящий из насоса, гидроаккумулятора и систем обратного потока, готовый к подключению к электродвигателю или дизельному двигателю.Гидравлические аккумуляторы в этих системах намного меньше, они используют газ для сжатия жидкости, и они не поддерживают постоянное давление.

Современные гидроаккумуляторы (обычно сжатого газа) имеют мало общего с аккумуляторными батареями с увеличенным весом в электрических сетях водоснабжения. Картина: HYD.

Несмотря на то, что практические преимущества гидравлики сохраняются — большое количество энергии может передаваться и точно контролироваться с помощью очень компактных компонентов — современный подход устраняет важное преимущество эффективности, характерное для более централизованных водопроводных сетей девятнадцатого и двадцатого веков. В городской водопроводной сети сравнительно небольшой центральный источник энергии — горстка гидроаккумуляторов — мог управлять большим количеством очень мощных машин. Насосные двигатели не нужно было рассчитывать на пиковые нагрузки.


Огромным преимуществом водопроводных сетей было то, что для работы большого количества мощных машин на большой территории требовалась сравнительно небольшая мощность.


Б. Пью оплакивает эту эволюцию в The Hydraulic Age (1980):

«Сто лет назад только несколько очень больших машин — поворотные мосты и иногда гидравлический пресс — имели собственное насосное оборудование.В последнее время эта тенденция распространилась на машины с гидравлическим приводом всех типов и размеров, и сегодня это общепринятая практика. С единичными гидроагрегатами каждая единица оборудования будет приводиться в движение собственным двигателем и будет иметь свои собственные приборы, фильтры и т. Д., Что потребует периодических проверок и технического обслуживания ».

«Двигатель будет работать постоянно, пока агрегат используется, независимо от нагрузки на насос, который он приводит. В случае нескольких таких агрегатов не все будут работать на полную мощность все время.Заметная экономия может быть достигнута за счет наличия центральной насосной станции для снабжения ряда агрегатов, и из-за диверсификации нагрузки максимальная нагрузка в любой момент времени будет меньше суммы отдельных максимальных нагрузок ».

«Преимущество большой станции перед несколькими меньшими заключается в способности удовлетворять разнообразные потребности. Каждая из небольших независимых электростанций должна иметь достаточную мощность для удовлетворения пикового спроса в своей области поставок и пики не появятся одновременно.Большой станции, охватывающей общую площадь нескольких небольших станций, потребуется только для удовлетворения максимального одновременного спроса, а это обычно будет меньше суммы локальных пиков ».

Альтернативы электроэнергии

Так же, как технологии механической передачи энергии, такие как системы рывков и бесконечные канатные приводы, водопроводные сети исчезли в значительной степени из-за того, что электрическая передача имеет превосходную эффективность на большие расстояния. Однако в более децентрализованной энергетической системе, основанной на возобновляемых источниках энергии, все эти забытые альтернативы электроэнергии заслуживают пересмотра для конкретных целей. Гидравлические аккумуляторы с поднятым весом могут работать от солнца, ветра или даже от педалей.

Изображение: J.W. Гибсон

Примерно в 1900 году превосходство электричества в передаче энергии на очень большие расстояния не оспаривалось. Однако для умеренных расстояний многие авторы сомневались в ее полезности. Например, Р.Кеннеди писал в книге « Современные двигатели и генераторы энергии» (1905):

.

«Электроэнергия в большинстве случаев предлагает огромные преимущества для передачи энергии на расстояние. Однако инженеры-электрики требуют слишком многого. Они склонны забывать о других средствах передачи энергии, что означает, что они имеют первостепенные преимущества перед электричеством во многих случаях. случаи.»

W.C. Анвин, автор наиболее полной книги XIX века по передаче электроэнергии ( On the Development and Transmission Power from Central Stations ), выразил аналогичное беспокойство в 1894 году:

«Учитывая, что распределение электроэнергии в ближайшее время будет играть важную роль в развитии систем распределения энергии, в настоящее время существует популярная тенденция рассматривать слишком исключительно электрические методы и игнорировать другие способы распределения энергии, которые были успешно применены. в прошлом и в подходящих условиях будут использоваться в будущем… Для передачи на умеренные расстояния есть выбор из нескольких средств передачи, и в таких случаях электрическое распределение не имеет и до настоящего времени не установило какого-либо универсального превосходства ».

В следующем выпуске нашей серии по передаче энергии мы обсудим сжатый воздух, который, вероятно, является наиболее подходящей альтернативой электричеству.

Крис Де Декер

Эта статья посвящена Чарльзу Стилу. РВАТЬ.


Статьи по теме:

Источники (в порядке важности):

  • «Гидравлический век», Б.Пью, 1980
  • «Гидравлическая энергия (промышленная археология)», Ян Макнил, 1972 г.
  • «О развитии и передаче энергии от центральных станций», W.C. Анвин, 1894. Также здесь.
  • «Гидравлическое оборудование с введением в гидравлику», Р.Г. Блейн, 1897
  • «История промышленной энергетики в США, 1780-1930: Том 3: Передача власти», Луи С. Хантер и Линвуд Брайант (1991).
  • «Современные двигатели и электрогенераторы; Практикум по первичным двигателям и передаче энергии, пара, электричества, воды и горячего воздуха — Том первый», Р.Кеннеди, 1905
  • «Современные двигатели и генераторы; Практическая работа по первичным двигателям и передаче энергии, пара, электричества, воды и горячего воздуха — Том шесть», Р. Кеннеди, 1905 г.
  • «Мощность и передача мощности», Э. В. Керр, 1908 г.
  • «Остатки ранних гидроэнергетических систем» (PDF), J.W. Гибсон, 3-я Австралазийская конференция инженерного наследия, 2009 г.
  • «L’eau à Genève et dans la région Rhône-Alpes: XIXe-XXe siècles», Serge Paquier, 2007
  • «L’eau des villes: Aux sources des empires municipaux», Жеральдин Пфлигер, 2009 г.
  • «Revue Technique de l’Exposition Universelle de 1889, Раздел II, гидравлика» (PDF), 1893
  • «Revue Technique de l’Exposition universelle de 1889, Том 9.Septième partie. Mécanique générale. Machins outils. Hydraulique générale. Travail du bois. Travail des métaux. Machineries Industrielles. «, 1893
  • «L’usine des force motrices de la Coulouvrenière à 100 ans: 1886-1986», Services Industriels, 1986
  • «Waterdruk в Антверпене. Een stroom van elektriciteit», Дирк Де Влишаувер и Ноэль Керкхарт, 1993 г.
  • «Kroniek van de stroomverdeling van Antwerpen-stad tot de Rupelstreek tot de Eerste Wereldoorlog», Geschiedkundige Studiegroep Ten Boome. (сайт)
  • «Het Zuiderpershuis, een памятник. Брошюра bij de tentoonstelling n.a.v. Open Monumentendag 2010» (PDF), Steunpunt Industrieel en Wetenschappelijk Erfgoed, 2010.
  • «Центробежный насос, турбины и водяные двигатели, включая теорию и практику гидравлики», Чарльз Герберт Иннес, 1898 г.
  • «Metropolitan Works: Сборник статей по истории Лондона», Ральф Терви, дата неизвестна.
  • «Гидравлическая энергетическая компания», Общество Воксхолла, 2012 г. (веб-сайт)
  • «London Hydraulic Power Co», Руководство Грейс, дата неизвестна (веб-сайт)
  • «Hydraulic Power», NSW HSC Online (сайт)
  • «Передача энергии сжатым воздухом», Роберт Занер, 1890 г.
  • «Водяные двигатели», Музей ретротехнологии, 2011 г. (сайт)
  • «История кранов (классическая строительная серия)», Оливер Бахманн, 1997.
  • «Об использовании водяного столба в качестве движущей силы для движущих сил», Уильям Армстронг, 1840 г.

Аккумуляторы | Гидравлика и пневматика

Загрузить эту статью в формате . PDF

Аккумуляторы обычно устанавливаются в гидравлических системах для хранения энергии и сглаживания пульсаций. Обычно в гидравлической системе с аккумулятором можно использовать насос меньшего размера, поскольку аккумулятор накапливает энергию от насоса в периоды низкой нагрузки.Эта энергия доступна для мгновенного использования и высвобождается по запросу со скоростью, во много раз превышающей ту, которая может быть подана одним насосом.


Рис. 1. Типичные виды в разрезе баллонных и поршневых аккумуляторов. Нажмите на картинку для увеличения.

Аккумуляторы

также могут действовать как поглотители перенапряжения или пульсации, подобно тому как воздушный купол используется в пульсирующих поршневых или ротационных насосах. Аккумуляторы будут амортизировать гидравлический удар, уменьшая удары, вызванные быстрой работой или внезапным запуском и остановкой силовых цилиндров в гидравлической цепи.

Существует четыре основных типа гидроаккумуляторов: поршневой грузонагруженный, диафрагменный (или баллонный), пружинный и гидропневматический поршневой. Первым был использован грузоподъемный тип, но он намного больше и тяжелее современных поршневых и баллонных типов. Как утяжеленные, так и пружинные типы сегодня встречаются нечасто. Гидропневматические аккумуляторы, показанные на рис. 1, чаще всего используются в промышленности.

Функции

Аккумулятор энергии — Гидропневматические аккумуляторы содержат газ вместе с гидравлической жидкостью.Жидкость обладает небольшими динамическими характеристиками хранения энергии; Типичные гидравлические жидкости могут быть уменьшены в объеме только примерно на 1,7% под давлением 5000 фунтов на квадратный дюйм. (Однако эта относительная несжимаемость делает их идеальными для передачи энергии, обеспечивая быстрое реагирование на потребность в мощности.) Следовательно, когда высвобождается только 2% от общего содержащегося объема, давление оставшегося масла в системе падает до нуля.

С другой стороны, газ, являющийся партнером гидравлической жидкости в гидроаккумуляторе, можно сжимать до небольших объемов при высоких давлениях. Потенциальная энергия хранится в сжатом газе и высвобождается по запросу. Такую энергию можно сравнить с энергией поднятого копра, готового передать свою огромную энергию на сваю. В гидроаккумуляторе поршневого типа энергия сжатого газа оказывает давление на поршень, разделяя газ и гидравлическую жидкость. Поршень, в свою очередь, выталкивает жидкость из цилиндра в систему и туда, где будет выполняться полезная работа.

Поглощение пульсаций — Насосы, конечно же, вырабатывают необходимую мощность, которая может использоваться или храниться в гидравлической системе.Многие насосы передают эту мощность пульсирующим потоком. Поршневой насос, обычно используемый из-за того, что он способен выдерживать высокое давление, может создавать пульсации, вредные для системы высокого давления. Аккумулятор, правильно расположенный в системе, существенно смягчит эти колебания давления.

Амортизация — Во многих гидравлических системах приводной элемент гидравлической системы внезапно останавливается, создавая волну давления, которая распространяется обратно через систему. Эта ударная волна может создавать пиковое давление, в несколько раз превышающее нормальное рабочее давление.Это может вызвать нежелательный шум или даже сбой системы. Правильно расположенная в системе газовая подушка гидроаккумулятора минимизирует этот шок.

Примером этого применения является амортизация ударов, вызванных внезапной остановкой погрузочного ковша на гидравлическом фронтальном погрузчике. Без гидроаккумулятора ковш весом более 2 тонн может полностью поднимать задние колеса погрузчика от земли. Сильные удары по раме и оси трактора, а также износ оператора преодолеваются путем добавления в гидравлическую систему соответствующего аккумулятора.

Дополнительная подача насоса — Аккумулятор, способный накапливать энергию, может дополнять гидравлический насос при подаче энергии в систему. Насос накапливает потенциальную энергию в аккумуляторе в периоды простоя рабочего цикла. Аккумулятор передает эту резервную мощность обратно в систему, когда цикл требует аварийной или пиковой мощности. Это позволяет системе использовать насос гораздо меньшего размера, что приводит к экономии затрат и мощности.

Поддержание давления — Изменения давления происходят в гидравлической системе, когда жидкость подвергается повышению или понижению температуры.Также может быть падение давления из-за утечки гидравлической жидкости. Аккумулятор компенсирует такие изменения давления путем подачи или приема небольшого количества гидравлической жидкости. Если основной источник питания выйдет из строя или остановится, аккумулятор будет действовать как вспомогательный источник энергии, поддерживая давление в системе.

Распределение жидкости — Аккумулятор может использоваться для подачи небольших объемов жидкостей, например консистентных смазок и масел, по команде.

Операция

При правильном размере и предварительной зарядке аккумуляторы обычно переключаются между ступенями (d) и (f), рисунок 2.Поршень не будет контактировать ни с одной крышкой в ​​поршневом аккумуляторе, а баллон не будет контактировать с тарельчатым клапаном или сжиматься, так что он разрушительно загибается в верхней части своего корпуса.

Производители указывают рекомендуемое давление предварительной зарядки для своих аккумуляторов. В приложениях для хранения энергии баллонный аккумулятор обычно предварительно заряжается до 80% минимального давления в гидравлической системе, а поршневой аккумулятор — до 100 фунтов на квадратный дюйм ниже минимального давления в системе. Давление предварительной зарядки определяет, сколько жидкости останется в гидроаккумуляторе при минимальном давлении в системе.

Рисунок 2. Шесть ступеней работы гидроаккумуляторов: ступень (а), аккумулятор пустой — газ отсутствует; стадия (б) — аккумулятор предварительно заправлен сухим азотом; на стадии (c) давление в системе превышает давление предварительной зарядки, и гидравлическая жидкость поступает в аккумулятор; стадия (d), пики давления в системе, максимальное количество жидкости поступило в аккумулятор, и открывается сброс системы; стадия (e), падение давления в системе, давление предварительной зарядки выталкивает жидкость из аккумулятора в систему; и на стадии (f) давление в системе достигает минимума, необходимого для работы.

Правильная предварительная заправка предполагает точное заполнение газовой стороны аккумулятора сухим инертным газом, например азотом, при отсутствии гидравлической жидкости на жидкостной стороне. Зарядка аккумулятора начинается тогда, когда гидравлическая жидкость попадает на жидкостную сторону, и происходит только при давлении, превышающем давление предварительной зарядки. Во время зарядки газ сжимается для хранения энергии.

Правильное давление предварительной зарядки является наиболее важным фактором продления срока службы аккумулятора. Тщательность, с которой необходимо выполнять и поддерживать предварительную зарядку, является важным соображением при выборе типа аккумулятора для приложения, при прочих равных.Если пользователь неосторожно относится к настройкам давления газа и предохранительного клапана или регулирует давление в системе без соответствующей регулировки давления предварительной зарядки, срок службы может быть сокращен, даже если был выбран правильный тип гидроаккумулятора. Если был выбран неправильный аккумулятор, преждевременный выход из строя почти наверняка.

Монтажное положение

Оптимальное положение для установки любого гидроаккумулятора — вертикальное с гидравлическим отверстием вниз. Поршневые модели могут быть горизонтальными, если жидкость остается чистой.Когда твердые загрязнители присутствуют или ожидаются в значительных количествах, горизонтальный монтаж может привести к неравномерному или ускоренному износу уплотнения. Максимальный срок службы может быть достигнут в горизонтальном положении с помощью нескольких поршневых уплотнений для уравновешивания параллельной поверхности поршня.


Рис. 3. Горизонтально установленный аккумулятор может вызвать неравномерный износ баллона и задержать жидкость в гидравлическом клапане.

Баллонный аккумулятор также может быть установлен горизонтально, рис. 3, но неравномерный износ баллона, когда он трется о корпус при плавании в жидкости, может сократить срок службы. Величина повреждения зависит от чистоты жидкости, частоты цикла и степени сжатия (определяемой как максимальное давление в системе / минимальное давление в системе). В крайних случаях жидкость может быть захвачена вдали от гидравлического конца, что снижает производительность или может удлинить баллон, чтобы принудительно закрыть тарелку преждевременно.

Размеры и мощность

Доступные размеры и емкость также влияют на выбор типа аккумулятора. Поршневые аккумуляторы определенной емкости часто поставляются с выбором диаметра и длины, таблица 1.Кроме того, поршни могут быть изготовлены по индивидуальной длине с небольшой надбавкой к цене или без нее. Баллонные гидроаккумуляторы предлагаются только одного размера на каждую емкость, с меньшими возможностями.

Таблица 1 — Относительные выходы, аккумулятор на 10 галлонов
Степень сжатия

1/2
Давление в системе, фунт / кв. Дюйм Рекомендуемая предварительная зарядка, psi Мощность, галлон
максимум 1 минимум 2 мочевой пузырь 3 поршень 4 мочевой пузырь 5 поршень 6
1.5
2,0
3 000
3 000
2,000
1,500
1,600
1,200
1,900
1,400
2,53
3,80
3,00
4,41
3,0
6,0
3 000
3 000
1 000 90 47 8 500 900 15 800
900
400
5,06
5,70
6,33

По своей природе более высокая мощность поршневого гидроаккумулятора может сделать его лучшей альтернативой при ограниченном пространстве. В таблице 1 приведены выходные данные для поршневых и баллонных аккумуляторов емкостью 10 галлонов, работающих изотермически в качестве вспомогательных источников энергии в диапазоне минимальных давлений в системе. Различия в давлении предварительной зарядки, столбцы 3 и 4 (определяемые 80% минимального давления в системе для моделей баллонов, на 100 фунтов на кв. Дюйм ниже минимального для поршня) приводят к существенной разнице в выходах, столбцы 5 и 6.

Чтобы предотвратить чрезмерную деформацию баллона и высокую температуру баллона, также обратите внимание в Таблице 1, что баллонные аккумуляторы должны быть рассчитаны на степень сжатия более 3: 1.

Составные части


Рис. 4. Поршневые аккумуляторы, используемые вместе с газовыми баллонами.

Хотя конструкции баллонов не доступны для размеров более 40 галлонов, поршневые конструкции в настоящее время поставляются на один резервуар объемом до 200 галлонов. Экономика и доступное пространство для установки побудили инженеров рассмотреть возможность установки нескольких компонентов. Два из них подходят для большинства приложений с высокой производительностью.

Установка на Рисунке 4 состоит из нескольких газовых баллонов, обслуживающих один поршневой аккумулятор через газовый коллектор.Размер аккумуляторной части должен быть таким, чтобы поршень не ударял повторно по крышкам во время цикла. Одним из недостатков этой конструкции является то, что выход из строя единственного уплотнения может вызвать утечку газа из системы. Поскольку газовые баллоны часто дешевле аккумуляторов, одним из преимуществ такой установки может быть более низкая стоимость.


Рис. 5. Несколько аккумуляторов могут быть соединены коллектором для обеспечения больших потоков в системе.

Несколько гидроаккумуляторов поршневой или баллонной конструкции могут быть установлены на гидравлическом коллекторе, рисунок 5.При использовании поршневых аккумуляторов поршень с наименьшим трением будет двигаться первым и иногда может опускаться на гидравлическую крышку. В медленных или редко используемых системах это несущественно.

Установки для газовых баллонов


Рис. 6. Небольшой аккумулятор может выполнять свою работу, если он удаленно подключен к дополнительному газовому баллону.

Удаленное хранение газа обеспечивает гибкость в больших и малых системах, рис. 6. Концепция газового баллона обычно описывается этой простой формулой: размер аккумулятора минус необходимый выход жидкости равен размеру газового баллона.Например, приложение, в котором требуется аккумулятор на 30 галлонов, может потребовать от 8 до 10 галлонов выходной жидкости. Таким образом, это приложение может быть удовлетворено аккумулятором на 10 галлонов и газовым баллоном на 20 галлонов.

Аккумулятор, используемый с удаленным хранением газа, обычно имеет порт того же размера на стороне газа, что и на стороне гидравлики, чтобы обеспечить беспрепятственный поток газа в газовый баллон и из него. Газовый баллон имеет эквивалентный порт на одном конце и газозаправочный клапан на другом. Эти двухкомпонентные аккумуляторы могут быть сконфигурированы или изогнуты под любым углом, чтобы соответствовать доступному пространству.

Концепция газового баллона подходит как для баллонных, так и для поршневых аккумуляторов. Обратите внимание, что для баллонных аккумуляторов требуется специальное устройство, называемое перегородкой на газовой стороне, чтобы предотвратить выдавливание баллона в трубопровод газового баллона.

Опять же, размер поршневого гидроаккумулятора должен быть таким, чтобы поршень не опускался до дна в любом конце цикла. Размеры мочевого пузыря должны быть такими, чтобы не допускать наполнения более чем на 85% или опорожнения более чем на 85%. Скорость потока между переносящим барьером баллона и его газовым баллоном будет ограничиваться горловиной барьерной трубки.Из-за этих недостатков баллонные аккумуляторы / баллонные аккумуляторы следует использовать для специальных применений.

Расходы и время отклика

Таблица 2 предлагает максимальные значения расхода для представительных размеров и типов аккумуляторов. Большие стандартные конструкции баллонов ограничены до 220 галлонов в минуту, хотя скорость может быть увеличена до 600 галлонов в минуту, используя дополнительный порт с высоким потоком. Тарельчатый клапан регулирует расход; чрезмерный поток приводит к преждевременному закрытию тарелки. Для достижения расхода более 600 галлонов в минуту необходимо несколько аккумуляторов, установленных на общем коллекторе.

Таблица 2 — Максимально рекомендуемый расход гидроаккумулятора
Поршень
Диаметр цилиндра, дюйм
Емкость баллона
галлонов в минуту при 3000 фунт / кв. 1 кварта
1 галлон
2½ галлона
100
400
800
60
150
220


600
7
9
12
больше 2½ галлона 1,200
2,000
3,400
220
220
220
600
600
600

Допустимые скорости потока для поршневых аккумуляторов обычно превышают таковые для баллонных конструкций. Поток ограничен скоростью поршня, которая не должна превышать 10 футов / сек, чтобы избежать повреждения уплотнения поршня. В высокоскоростных приложениях высокие температуры контакта уплотнения и быстрая декомпрессия азота, проникшего в материал уплотнения, могут вызвать пузыри, трещины и ямки на резине.

Баллонные аккумуляторы

быстрее реагируют на изменения давления в системе, чем поршневые, по двум причинам:

1. Резиновые баллоны не должны преодолевать статическое трение, которое должно преодолевать поршневое уплотнение, и 2. Масса поршня не требует ускорения и замедления.
На практике, однако, разница в ответах может быть не такой большой, как принято считать, и, вероятно, незначительна в большинстве приложений.

Амортизатор


Рис. 7. Испытательная схема для генерации и измерения ударных волн в системе.

Тесты, проведенные в Университете Висконсина, Мэдисон, показывают, что для контроля шока не обязательно нужен аккумулятор в мочевом пузыре. При номинальном расходе системы 30 галлонов в минуту в испытательной цепи, рис. 7, направленный регулирующий клапан с внутренним управлением, расположенный на расстоянии 118 футов от насоса, закрывается, создавая удар.Когда ударная волна проходит от клапана обратно по гидравлическим линиям, огибает углы и различные ограничения, некоторая часть ее энергии расходуется на ускорение массы жидкости в линиях.


Рис. 8. На графике показаны результаты ударно-волновых испытаний.

С 1 дюйм. При установке предохранительного клапана на 2750 фунтов на квадратный дюйм и отсутствии аккумулятора в цепи, осциллограмма A , рис. 8, показывает скачок давления на 385 фунтов на квадратный дюйм по сравнению с настройкой предохранительного клапана. Добавление поршневого гидроаккумулятора на 1 галлон к клапану снижает переходной режим до 100 фунтов на кв. Дюйм сверх уставки предохранительного клапана, график B .Замена баллонного гидроаккумулятора емкостью 1 галлон сокращает переходной процесс до 78 фунтов на квадратный дюйм по сравнению с настройкой предохранительного клапана, трасса C , всего на 22 фунта на квадратный дюйм лучше, чем защита поршневого типа.


Рис. 9. Результаты второго испытания с использованием трубки меньшего диаметра.

Второй аналогичный тест с 5/8 дюйм. Настройка трубопровода и предохранительного клапана на 2650 фунтов на квадратный дюйм приводит к скачку давления на 2011 фунтов на квадратный дюйм по сравнению с настройкой предохранительного клапана без аккумулятора, график A , рисунок 9. Поршневой аккумулятор демпфирует переходный процесс до 107 фунтов на квадратный дюйм по сравнению с настройкой предохранительного клапана, график B , в то время как баллонный гидроаккумулятор гасит переходный процесс до 87 фунтов на кв. Дюйм по сравнению с настройкой предохранительного клапана, кривая C .Разница между типами аккумуляторов в подавлении ударов снова была незначительной.

Сервооборудование

Другое распространенное заблуждение гласит, что для всех приложений сервопривода требуется баллонный аккумулятор. Опыт показывает, что лишь небольшому проценту сервоприводов требуется время отклика 25 мс или меньше, область, где разница в отклике между поршневыми и баллонными гидроаккумуляторами становится существенной. Накопители мочевого пузыря должны использоваться для приложений, требующих ответа менее 25 мс, и любого типа, когда ответ 25 мс или более является адекватным.

Настройка и обслуживание: предварительная зарядка

На недавно отремонтированных баллонных гидроаккумуляторах внутренний диаметр корпуса необходимо смазать системной жидкостью перед предварительной заправкой. Эта жидкость действует как амортизатор, смазывает и защищает мочевой пузырь, когда он раскручивается и раскручивается. Когда начинается предварительная зарядка, следует медленно вводить начальные 50 фунтов на квадратный дюйм азота.


Рис. 10. Звездообразование на конце баллона (а) может указывать на потерю эластичности материала баллона из-за охрупчивания от холодного газообразного азота во время предварительной зарядки.Если мочевой пузырь проталкивается под тарелку (b), мочевой пузырь может выдержать С-образный разрез тарелки.

Несоблюдение этих мер предосторожности может привести к немедленному отказу мочевого пузыря. Азот под высоким давлением, быстро расширяющийся и, следовательно, холодный, может направлять длину свернутого пузыря и концентрироваться на дне. Охлажденная хрупкая резина, быстро расширяющаяся, может разорваться в виде звездообразования, рис. 10 (а). Мочевой пузырь также может быть зажат под тарелкой, в результате чего на дне мочевого пузыря получится С-образный разрез, рис. 10 (b).

Сторона жидкости поршневых аккумуляторов должна быть пустой во время предварительной зарядки, чтобы объем на стороне газа был максимальным. Во время предварительной зарядки могут возникнуть небольшие повреждения, если таковые имеются.

Слишком высокое давление предварительной зарядки или снижение минимального давления в системе без соответствующего снижения давления предварительной зарядки может вызвать проблемы в работе или повреждение аккумуляторов. При чрезмерном давлении предварительной зарядки поршневой гидроаккумулятор будет переключаться между ступенями (e) и (b), рисунок 2, и поршень будет находиться слишком близко к гидравлической торцевой крышке. При минимальном давлении в системе поршень может опуститься вниз, что приведет к снижению производительности и, в конечном итоге, к повреждению поршня и его уплотнения. Часто слышно удары поршня; звук служит предупреждением о надвигающихся проблемах.

Слишком высокий предварительный заряд в баллонном аккумуляторе может привести к попаданию баллона в тарельчатый узел при переключении между стадиями (e) и (b), рис. 2. Это может вызвать усталостное повреждение пружины и тарельчатого клапана в сборе или защемление и отрежьте мочевой пузырь, если пакет застрял под тарелкой, когда он был принудительно закрыт.Слишком высокое давление предварительной зарядки является наиболее частой причиной отказа мочевого пузыря.

Слишком низкое давление предварительной зарядки или повышение давления в системе без компенсирующего увеличения давления предварительной зарядки также может вызвать проблемы в работе с возможным повреждением аккумулятора. Без предварительной зарядки в поршневом гидроаккумуляторе поршень, скорее всего, попадет в крышку газового конца и, вероятно, останется там. Единичный контакт вряд ли приведет к повреждению.

Для баллонных аккумуляторов слишком низкая предварительная зарядка или ее отсутствие может иметь серьезные последствия.Баллон может быть раздавлен до верхней части оболочки, затем может выдавиться в газовый клапан и быть проколот. Одного такого цикла достаточно, чтобы разрушить мочевой пузырь. Таким образом, поршневые гидроаккумуляторы более терпимы к неправильной подзарядке.

Загрузить статью в формате .PDF

ГЛАВА 16: Аккумуляторы | Гидравлика и пневматика

Гидропневматические аккумуляторы

Гидроаккумуляторы

Аккумуляторы позволяют хранить полезные объемы практически несжимаемой гидравлической жидкости под давлением.Символы и упрощенные разрезы на рисунке 16-1 показывают несколько типов аккумуляторов, используемых в промышленных приложениях. Они не являются полными представлениями, но они иллюстрируют общие принципы работы.

Контейнер емкостью 5 галлонов, полностью заполненный гидравлическим маслом при давлении 2000 фунтов на квадратный дюйм, будет выпускать всего несколько кубических дюймов жидкости, прежде чем давление упадет до 0 фунтов на квадратный дюйм. Если бы тот же самый контейнер был заполнен наполовину маслом, а наполовину азотом, он мог бы выпустить более 1 1/2 галлона жидкости, в то время как давление упало всего на 1000 фунтов на квадратный дюйм.В этом большое преимущество гидропневматических аккумуляторов.

Типы аккумуляторов

Без сепаратора : Некоторые оригинальные аккумуляторы представляли собой емкости высокого давления со смотровым окном, показывающим уровень жидкости. Они были заполнены примерно наполовину маслом, наполовину азотом — без разделительного барьера между ними. Перед остановкой насоса запорный клапан на выпускном отверстии аккумулятора был закрыт, чтобы предотвратить утечку жидкости и газа. Этот тип аккумуляторов сегодня не используется в новых схемах, но многие из них все еще используются.

Баллон с газом : Многие аккумуляторы теперь используют резиновый баллон для разделения газа и жидкости. Тарельчатый клапан в выпускном отверстии предотвращает выдавливание баллона при выключенном насосе. Первоначальный дизайн был в стиле ремонта днища, показанном слева на Рисунке 16-1. Его до сих пор предлагают большинство производителей. Теперь доступен вид ремонта сверху, который делает замену мочевого пузыря простой и быстрой.

Поршень с газовым наддувом : Поршневой аккумулятор с газом имеет свободно плавающий поршень с уплотнениями для разделения жидкости и газа.Он работает и действует аналогично баллонному типу, но имеет некоторые преимущества в определенных областях применения. Поршневой аккумулятор с газовым зарядом может стоить вдвое дороже, чем баллонный аккумулятор такого же размера.

Подпружиненный поршень : Подпружиненный поршневой аккумулятор идентичен газонагнетательному агрегату, за исключением того, что пружина прижимает поршень к жидкости. Его главное преимущество — отсутствие утечки газа. Основным недостатком является то, что такая конструкция не подходит для высокого давления и большого объема.

Вес с нагрузкой : Все газовые аккумуляторы теряют давление из-за выхода жидкости. Это связано с тем, что газообразный азот был сжат поступающей из насоса жидкостью, и газ должен расширяться, чтобы вытолкнуть жидкость наружу. Нагруженный вес гидроаккумулятор, показанный на Рисунке 16-1, не теряет давление, пока гидроцилиндр не опустится до дна. Таким образом, 100% жидкости используется при полном давлении в системе. Основным недостатком весовых аккумуляторов является их физический размер. Они занимают много места и очень тяжелые, если требуется большой объем.Они хорошо работают в центральных гидравлических системах, потому что обычно для них есть место в зоне силового агрегата. Однако центральные гидравлические системы перестают быть популярными, поэтому лишь на некоторых предприятиях используются весовые аккумуляторы. (Прокатные станы — это одно из приложений, в котором место для размещения больших предметов не является проблемой.) Обратите внимание, что часто требуется много времени, чтобы заполнить этих монстров.

Мембранные аккумуляторы : Существуют также мембранные аккумуляторы с упругими или металлическими диафрагмами. Они используются там, где хранимый объем небольшой.

Рис. 16-1. Поперечные сечения и обозначения гидроаккумуляторов

Почему используются аккумуляторы?

Для увеличения расхода насоса: Чаще всего аккумуляторы используются для увеличения расхода насоса.Некоторые контуры требуют большого расхода на короткое время, а затем используют мало жидкости или вообще не используют ее в течение длительного периода. Вообще говоря, когда половина или более машинного цикла не использует поток насоса, приложение является вероятным кандидатом для схемы аккумулятора.

В схеме на Рисунке 16-2 используются несколько аккумуляторов для пополнения потока насоса, поскольку время выдержки составляет 45 секунд из 57,5-секундного времени цикла. Насос фиксированного объема на 22 галлона в минуту в этом контуре работает под давлением в течение большей части цикла, чтобы заполнить цилиндр и аккумуляторы. Без аккумуляторов для этой схемы потребовался бы насос на 100 галлонов в минуту, приводимый в движение двигателем мощностью 125 л.с. Первоначальная стоимость меньшего насоса и двигателя плюс аккумуляторы очень близка к стоимости более крупного насоса и двигателя. Однако экономия энергии в течение всего срока службы машины делает изображенную схему намного более экономичной.

Рис. 16-2. Контур аккумулятора, который дополняет поток насоса

Один недостаток использования аккумуляторов для дополнения потока насоса состоит в том, что контур должен работать при давлении выше, чем необходимо для выполнения работы.В схеме на Рисунке 16-2 для выполнения работы необходимо давление не менее 2000 фунтов на квадратный дюйм. Это означает, что гидроаккумуляторы должны быть заполнены до более высокого давления, чтобы они могли подавать дополнительную жидкость без падения давления ниже минимального. В этом контуре используется максимальное давление 3000 фунтов на квадратный дюйм, чтобы хранить достаточно жидкости для цикла цилиндра в отведенное время и при этом сохранять достаточную силу для выполнения работы. Регулирование потока в контуре необходимо для предотвращения слишком быстрого цикла цилиндра. Аккумулятор нагнетает жидкость с любой скоростью, с которой трубопровод может справиться, при любом перепаде давления при открытии пути потока.

В схеме на Рисунке 16-2 используется насос фиксированного объема и клапан разгрузки и разгрузки аккумулятора. Клапан направляет поток насоса к гидроаккумуляторам, когда давление падает примерно на 15% ниже максимального установленного давления. При установленном давлении открывается разгрузочный клапан, и весь поток насоса переходит в бак при падении давления от 25 до 50 фунтов на квадратный дюйм. В то время как насос работает в байпасном режиме, обратный клапан предотвращает разгрузку гидроаккумуляторов в резервуар. Разгрузочный клапан (который представляет собой обратный клапан с большим передаточным числом, закрывающим пилот) удерживается закрытым давлением холостого хода насоса, пока насос не отключится.

Для поддержания давления: Еще одно распространенное применение гидроаккумуляторов — поддержание давления в контуре, пока насос не нагружен. Это особенно полезно при использовании насосов фиксированного объема в длительных циклах выдержки. Цепь пресса для ламинирования на Рисунке 16-3 зажимает материал и удерживает его с усилием от одной до пяти минут. Если бы насос протекал через предохранительный клапан под высоким давлением в течение этого времени, выделялось бы много тепла, тратя энергию. С насосом с компенсацией давления потери энергии будут меньше, но система все равно может перегреться за короткое время.

Рис. 16-3. Использование гидроаккумулятора для поддержания давления и / или компенсации утечки

Добавление гидроаккумулятора, регулятора расхода и реле давления к контуру насоса с фиксированным объемом позволяет насосу разгружаться, когда давление равно или превышает минимальную установку реле давления. Если утечка в клапане или уплотнениях цилиндра позволяет давлению упасть примерно на 5%, реле давления переключает гидрораспределитель, чтобы создать давление на торец крышки цилиндра и восстановить давление до максимума. Единственный раз, когда насос загружается, — это когда требуется жидкость.Эта схема будет непрерывно ламинировать детали и не требует теплообменника. Регулятор расхода должен быть установлен на пониженную скорость, чтобы гидроаккумулятор не опорожнялся слишком быстро, когда гидрораспределитель смещается для втягивания плиты. Поток для компенсации утечки незначителен и не требует высокой скорости.

Разгрузочный клапан гидроаккумулятора, показанный на Рисунке 16-3, представляет собой запирающий обратный клапан с высоким коэффициентом сжатия, который удерживается закрытым за счет низкого давления, когда насос разгружен. Он открывается для разряда любой накопленной энергии при выключении насоса.

Для поглощения удара: быстро движущиеся гидравлические контуры могут создавать скачки давления, вызывающие сотрясение при резком прекращении потока. В таких подверженных ударам контурах можно установить гидроаккумуляторы, чтобы снизить разрушающее давление и выбросы потока до приемлемого уровня или полностью их устранить. (Аккумуляторы могут справиться с другими проблемами скачков давления с помощью некоторых дополнительных клапанов для особых случаев.)

На рисунке 16-4 показан аккумулятор, установленный для устранения скачков давления, вызванных внезапной блокировкой потока.Заправка азотом в этой установке должна быть на 5-10% выше рабочего давления. Это предотвращает попадание гидроаккумулятора в контур, за исключением ситуаций скачка давления. Здесь лучше всего работает баллонный аккумулятор, поскольку он быстро реагирует на изменения давления. (Соблюдайте осторожность при использовании аккумуляторов в ситуациях, связанных с ударами. Можно фактически усилить удар, а не уменьшить или устранить его.)

Рис. 16-4. Использование гидроаккумулятора для устранения ударов, вызванных внезапной остановкой потока

В качестве аварийного источника питания: Некоторым машинам с гидравлическим приводом всегда может потребоваться остановка в открытом положении, чтобы не повредить продукт или оборудование. Когда сбой питания выключает гидравлический насос и машина оказывается в каком-то положении, отличном от открытого, должен быть какой-то способ открыть ее. Резервный насос с приводом от двигателя может восполнить счет и в некоторых случаях может быть лучшим средством. Другой вариант — использовать аккумуляторы, которые заряжаются перед первым циклом и хранятся в таком состоянии до выключения машины. Накопленная энергия готова для перевода машины в открытое положение в случае сбоя питания.

Схема на Рисунке 16-5 управляет задвижкой на бункере для отходов, которая открывается гидравлически для заполнения транспортной тележки.Схема расположена в удаленном месте, подверженном сбоям в электроснабжении, поэтому она предназначена для автоматического закрытия ворот в случае отключения электроэнергии.

Рис. 16-5. Использование аккумулятора в качестве аварийного источника питания

На принципиальной схеме показан цилиндр в состоянии покоя с работающим насосом. Когда агрегат запускается, соленоиды C, и C2, на нормально открытых двухходовых распределителях находятся под напряжением. Они остаются под напряжением, пока включен насос. Первый поток насоса проходит через обратный клапан и заполняет аккумулятор жидкостью, достаточной для выдвижения цилиндра из любого открытого положения.При наличии электроэнергии ворота можно открывать и закрывать, чтобы сбросить отходы в ожидающий грузовик. Если грузовик заполняется и происходит сбой питания, насос останавливается и все соленоиды обесточиваются. В этот момент аккумулятор подсоединен к концу крышки цилиндра, и жидкость в конце штока цилиндра имеет свободный путь к резервуару.

Обратите внимание на ручной слив, подключенный к линии между обратным клапаном и аккумулятором. Этот слив необходимо открыть перед работой с контуром. Табличка на машине предупреждает обслуживающий персонал о потенциальной опасности, если аккумулятор не слит.Аварийные источники питания — единственная аккумуляторная цепь, которую в большинстве случаев нельзя слить автоматически.

Меры предосторожности для аккумулятора

  • Всегда используйте какой-либо способ слить воду из аккумулятора при выключении. (В конце этого раздела показано несколько способов автоматического слива аккумулятора. Кроме того, всегда есть старый резервный, ручной слив.) Никогда не работайте в цепи с аккумулятором, пока не убедитесь, что в нем нет давления.
  • Убедитесь, что поток в гидроаккумуляторе ограничен до разумного уровня во время работы, и выключите его, чтобы избежать повреждения машины или трубопроводов.Аккумуляторы будут разряжать жидкость с любой скоростью, которую позволяет выходной путь потока. Такой высокий поток длится недолго, но ущерб, который он наносит, наносится быстро.
  • Всегда изолируйте насос от гидроаккумулятора с помощью обратного клапана, чтобы жидкость не могла протекать обратно в насос. Без обратного клапана обратный поток из гидроаккумулятора может двигать насос в обратном направлении, а в некоторых случаях приводить к превышению скорости и разрушению.
  • Проверяйте давление предварительной зарядки гидроаккумулятора при установке и не реже одного раза в день в течение первой недели работы. Если в течение этого времени заметной потери давления не наблюдается, выполните следующую проверку через неделю. Если все в порядке, то после этого делайте плановую проверку каждые три-шесть месяцев. Когда предварительная зарядка аккумулятора падает ниже номинального давления, объем доступной жидкости уменьшается, и, наконец, цикл замедляется.

Один из способов проверить предварительную зарядку гидроаккумулятора — выключить насос, дать возможность гидроаккумулятору полностью слить масло обратно в бак, а затем подсоединить элементы зарядного комплекта, рисунок 16-6.Сначала снимите колпачок газового клапана и установите на газовый клапан манометр, шланг и тройниковую рукоятку. Затем поверните тройник, чтобы открыть клапан и снять показания манометрического давления. Однако каждый раз, когда выполняется эта операция, есть вероятность, что клапан не переустановится, и газ начнет течь.

Рис. 16-6. Зарядка аккумулятора или проверка его давления предварительной зарядки с помощью комплекта для зарядки

Чтобы избежать потенциальной утечки газа, на рис. 16-7 показаны два неинвазивных метода проверки предварительной зарядки.Оба они быстрые, простые и могут быть выполнены практически в любое время без длительного перерыва в производстве. Любой из этих способов дает быструю и достаточно тщательную проверку без вторжения в водопровод. Они не на 100% точны, но будут находиться в пределах ± 5% от показаний манометра — и их делает почти любой. Метод слева является наименее точным, особенно при использовании манометра, заполненного глицерином.

Начальный запуск насоса Метод слева показывает скачок давления после запуска насоса, а затем устойчивый подъем до установленного давления.Этот первый скачок представляет собой давление предварительной зарядки, а устойчивый подъем происходит во время сжатия газа в баллоне или за поршнем. Промежуток времени между первым скачком давления и достижением давления в системе зависит от объема гидроаккумулятора и производительности насоса.

Рис. 16-7. Две неинвазивные процедуры проверки давления предварительной зарядки гидроаккумулятора

Отключение насоса при полном давлении Метод является самым простым и наиболее точным, особенно если клапан сброса гидроаккумулятора управляется вручную. Жидкость можно спускать медленно с помощью ручного слива, поэтому манометр медленно достигает давления перед заправкой.

При использовании этого метода система должна находиться под давлением, а аккумулятор заряжен как минимум выше давления предварительной зарядки. При отключении системы открывается либо автоматический, либо ручной слив, и давление начинает падать. Поскольку манометр показывает давление масла, и единственная причина, по которой оно существует, заключается в том, что над ним находится захваченный газ, давление упадет до определенной точки, а затем внезапно упадет до нуля. Считайте давление, когда манометр внезапно упадет до нуля, чтобы определить предварительную заправку газом.

Этот метод является наиболее точным, но он не точен, как показания манометра, поэтому используйте его для беглой проверки так часто, как это необходимо, чтобы увидеть, удерживается ли заряд газа.

Предварительное давление гидроаккумулятора

Обычно газовые аккумуляторы предварительно заправляются примерно до 85% минимального рабочего давления системы. Это гарантирует, что баллон или поршень не будут выпускать всю жидкость во время каждого цикла. Если вся жидкость откачивается с высокой скоростью, баллоны могут попасть в тарельчатые клапаны, а поршни могут деформироваться при ударе металла по металлу.

В некоторых приложениях это значение 85% может быть низким из-за низкого минимального давления в системе. В таком случае используйте гидроаккумулятор поршневого типа, потому что поршень может перемещаться вверх по каналу почти на любое расстояние без повреждений. Баллонный аккумулятор не следует использовать, если давление предварительной зарядки меньше половины максимального давления. Это позволяет избежать настолько сильного сжатия мочевого пузыря, что при трении самого себя в нем образуются отверстия.

Применение аккумуляторов

Многие приложения могут использовать аккумулятор любого типа с одинаково удовлетворительными результатами.Однако бывают случаи, когда один конкретный стиль более отзывчив или предлагает более длительный срок службы. Как упоминалось в предыдущем разделе, величина давления предварительной зарядки является одной из причин выбора баллонного или поршневого аккумулятора.

Аккумуляторы с тяжелой нагрузкой медленно реагируют на повышение давления, поэтому они не работают как амортизаторы. Аккумуляторы с тяжелой нагрузкой уменьшают, но не останавливают скачки давления. Поршневые гидроаккумуляторы не так быстро реагируют на быстрое повышение давления, как баллонные.Поэтому в таких ситуациях лучшим выбором будет баллонный аккумулятор.

Некоторые контуры гидроаккумуляторов устанавливаются для гашения скачков высокого давления на выходе поршневых насосов. Поршневой аккумулятор в этом приложении не может реагировать достаточно быстро, чтобы выполнить свою работу. Кроме того, короткий ход поршня и уплотнений может вызвать чрезмерный износ отверстия и уплотнений. В этой схеме лучше всего работает баллонный аккумулятор.

Калибровочные аккумуляторы

Большинство поставщиков аккумуляторов предлагают в своей литературе информацию о размерах аккумуляторов для любой из вышеперечисленных схем. Многие предлагают компьютерные программы, требующие только ввода системных требований. Затем программа рассчитывает размер аккумулятора и выводит номер детали. Одна компания предлагает формулы и программное обеспечение для использования в Интернете.

Клапаны сброса гидроаккумулятора

Во всех вышеупомянутых применениях гидроаккумуляторов (за исключением случая аварийного электроснабжения) жидкость из гидроаккумулятора сливалась автоматически при остановке. Это очень важно, поскольку аккумуляторы накапливают энергию, которая может представлять угрозу безопасности и может вызвать повреждение машины.Вот примеры различных типов разгрузочных клапанов и схем гидроаккумулятора.

На рис. 16-8 показана одна часто используемая схема. Нормально открытый 2-ходовой распределитель с электромагнитным управлением входит в линию насоса между запорным обратным клапаном и аккумулятором. Электромагнитный клапан подключен так, что он находится под напряжением при запуске насоса и обесточивается при остановке насоса. Отверстие перед 2-ходовым клапаном контролирует поток, когда гидроаккумулятор разряжается, чтобы предотвратить повреждение клапана.Эта конструкция одинаково хорошо работает с насосами с фиксированным рабочим объемом или с насосами с компенсацией давления.

Рис. 16-8. Цепь, в которой используется электромагнитный клапан для разгрузки аккумулятора

Предупреждение: некоторые электромагнитные клапаны, даже если они предназначены для непрерывного режима работы, сильно нагреваются при длительном включении питания. Такой перегрев может вызвать образование отложений лака и заблокировать внутренние части клапана в закрытом состоянии после отключения насоса. Это означает, что захваченная энергия не разряжается, и аккумулятор может причинить вред любому, кто работает в цепи.

Схема сброса на Рисунке 16-9 предназначена только для насосов с компенсацией давления. Комплектный набор клапанов изолирует аккумулятор во время работы насоса и автоматически опорожняет его при остановке. Пакет состоит из обратного клапана изоляции, обратного клапана пилот-к-конца, и управление потоком отверстия.

Рис. 16-9. Контур с гидравлическим управлением, который изолирует и опорожняет аккумулятор, питаемый насосом с компенсацией давления

При запуске насоса поток направляется в контур и аккумулятор.Давление на выходе насоса смещает запорный клапан пилот-к-близко, блокируя поток в резервуар. Когда аккумулятор полон, насос компенсирует отсутствие потока, и контур ожидает нового цикла. Когда давление падает, насос возвращается в рабочий режим и компенсирует поток, идущий в контур. При отключении насоса давление пилотного клапана на запирающем обратном клапане падает, и клапан переключается на открытие. Теперь накопленная в аккумуляторе энергия передается в резервуар через отверстие. Этот контур очень надежен, потому что закрытие и / или открытие клапанов зависит от давления в системе или насоса.

Насос фиксированного объема должен быть подключен к резервуару при очень низком давлении, когда его поток не работает. Общая схема разгрузки насоса фиксированного объема и разгрузки аккумулятора показана на Рисунке 16-10. Разгрузочный предохранительный клапан с внутренним управлением и встроенным обратным клапаном направляет весь поток насоса в контур и гидроаккумулятор до тех пор, пока система не достигнет установленного давления. Когда управляющий шар начинает разгружаться, давление системы давит на разгрузочный поршень и заставляет его выйти из седла.Это снимает все давление с верхней части тарелки предохранительного клапана. Насос разгружается в резервуар под давлением от 25 до 100 фунтов на квадратный дюйм, пока давление в системе не упадет примерно на 15%. После этого падения сила пружины толкает разгрузочный поршень назад, и поток насоса снова возвращается в контур.

Рис. 16-10. Контур с гидравлическим управлением, который изолирует, разгружает и опорожняет аккумулятор, питаемый насосом постоянной производительности.

Разгрузочный клапан гидроаккумулятора блокирует поступление жидкости в резервуар во время работы насоса и открывается для сброса накопленной энергии при его отключении.Разгрузочный клапан гидроаккумулятора представляет собой запорный клапан с высоким коэффициентом (до 200: 1), который закрывается из-за ненагруженного или рабочего давления насоса. При соотношении площадей 200: 1 между тарельчатым клапаном и пилотным поршнем давление 25 фунтов на кв. Дюйм в управляющем отверстии остановится до 5000 фунтов на квадратный дюйм при отключении тарельчатого клапана. Это удерживает жидкость в контуре аккумулятора до тех пор, пока насос не будет остановлен. Затем вся хранимая под давлением жидкость быстро и безопасно стекает в резервуар. (Один поставщик предлагает разгрузочный предохранительный клапан и разгрузочный клапан гидроаккумулятора в одном корпусе.Эта комбинация упрощает прокладку труб, обеспечивая тот же эффект.)

Другое применение аккумуляторов

Аккумуляторы также используются в системах, где тепловое расширение может вызвать чрезмерное давление. Цилиндры с заблокированными портами в зоне с высокой температурой окружающей среды могут перейти под высокое давление, если нет места для расширяющейся жидкости.

Еще одно применение аккумуляторов — это барьер между двумя разными жидкостями. Насос, использующий гидравлическую жидкость, поддерживает давление в контуре, в котором используется вода или другая несовместимая среда.

Один поставщик предлагает аккумуляторы низкого давления в качестве дыхательных устройств для герметичных резервуаров. Это предотвращает попадание переносимых по воздуху загрязняющих веществ в гидравлическое масло при повышении и понижении уровня жидкости.

Дополнительные схемы и другую информацию об аккумуляторах см. В готовящейся к публикации электронной книге автора « Fluid Power Circuits Explained».

Что такое аккумулятор?

Я попытаюсь сделать невозможное: я объясню основы работы гидропневматических аккумуляторов, не прибегая к математике.Я буду использовать некоторые числа там, где это необходимо, но, к сожалению, реальность такова, что правильное применение аккумуляторов требует манипулирования уравнениями. Аккумуляторы — универсальный и ценный инструмент, но из-за отсутствия понимания их использования — и того факта, что немногие люди умеют правильно их применять — они используются недостаточно. К концу этой статьи я надеюсь заложить прочную основу теории работы аккумуляторов.

Гидравлические аккумуляторы

могут выполнять несколько функций: аккумулирование энергии, компенсацию утечек, а также снижение вибрации и ударов.Эти функции могут использоваться для различных приложений и целей, хотя накопление энергии является наиболее распространенным. Есть несколько гидравлических систем, настолько совершенных, что аккумулятор не улучшил бы их, за исключением, возможно, крайних значений в отношении высоких требований, стоимости или легкости.

Гидравлическая жидкость, будь то масло, вода или синтетическая композиция, не очень сжимаема. Нас учат, что он не сжимается, но все, даже алмаз и вольфрам. Просто одни вещества более сжимаются, чем другие, и на самом деле гидравлическое масло сжимается меньше нуля.5% на 1000 фунтов на квадратный дюйм. Таким образом, при поразительном давлении 10 000 фунтов на квадратный дюйм масло будет сжато на жалкие 4%. В реальных гидравлических системах компрессия может быть выше из-за увлеченного воздуха в масле.

Как видите, любые попытки сохранить энергию путем сжатия масла бесплодны. Хотя декомпрессия большого объема жидкости под высоким давлением представляет собой определенную проблему, поскольку может быть высвобождено много энергии, это высвобождение энергии обычно происходит за доли секунды. Для больших систем с высоким давлением, таких как листогибочные прессы или массивные ножницы, требуются подсхемы для управления этой декомпрессией.Даже когда декомпрессия может происходить медленно, ее никогда не бывает достаточно, чтобы произвести полезную работу высвобождаемой энергии.

Газы обладают высокой сжимаемостью, и когда газ сжимается в замкнутом пространстве, где давление за пределами контейнера ниже, газ будет делать все возможное, чтобы расшириться, чтобы уравновеситься с давлением окружающей среды. Энергия давления, запасенная в сжатом газе, обратно пропорциональна размеру нового пространства, которое занимает газ. Например, если взять десять кубических футов окружающего воздуха и поместить их в контейнер объемом один кубический фут, давление увеличится в десять раз (всегда помните, что в этом расчете необходимо использовать атмосферное абсолютное давление).

Пневматические системы используют разницу давлений между сжатым воздухом и атмосферой. Воздушные компрессоры «всасывают» окружающий воздух, а затем сжимают его до от 1/7 до 1/11 от первоначального объема, чтобы достичь значения от 90 до 150 фунтов на квадратный дюйм. Этот сжатый воздух хранится и / или распределяется, где он использует разницу давлений для создания механической силы в пневматических цилиндрах и двигателях. Чем выше степень сжатия, тем больше у него потенциала для работы, хотя в пневматических системах наступает момент, когда сжатие до более чем 150 фунтов на квадратный дюйм начинает выделять больше тепла, чем что-либо еще.Помните, что когда вы сжимаете объем воздуха, вы, по сути, забираете все молекулы воздуха и тепловую энергию и конденсируете ее. Сжатие воздуха до одной десятой его первоначального объема также увеличивает температуру в десять раз (закон Чарльза).

Однако типичное давление в пневматической системе мало влияет на мотивацию гидравлических систем. Даже при 150 фунтах на квадратный дюйм, что является высоким показателем для пневматической системы, вы не сможете даже повернуть орбитальный двигатель большого рабочего объема без нагрузки. Итак, если пневматические системы не могут эффективно достигать 200 фунтов на квадратный дюйм, как мы можем использовать газы для хранения энергии в системах с давлением 3000 фунтов на квадратный дюйм или более?

В гидропневматических аккумуляторах используется сжатый газообразный азот, потому что он относительно инертен и является наиболее распространенным газом в нашей атмосфере.Азот не обладает магическими свойствами, позволяющими сжимать его без нагрева, но системы сжатия азота обычно большие, эффективные и дорогие. Они, как правило, работают медленно, в несколько этапов. Это позволяет умеренной степени сжатия каждой ступени и обеспечивает охлаждение между ступенями. После сжатия азот можно хранить в больших сборных резервуарах или прямо в баллонах с азотом для распределения конечным пользователям. Обычно баки заряжены до 5000 фунтов на квадратный дюйм, чего достаточно для заполнения большинства аккумуляторов.

После установки аккумулятор готов к зарядке. Для подсоединения баллона с азотом к газовой арматуре аккумулятора используются специальный шланг и заправочная головка, которые обычно входят в комплект. На зарядной головке будет установлен манометр для измерения давления внутри гидроаккумулятора (обычно манометр есть и на цилиндре). Когда клапан открывается, чтобы позволить азоту попасть в аккумулятор, можно услышать прилив газа, поскольку он сначала наполняется быстро. Перепад давления уменьшается по мере заполнения, и клапан закрывается, когда достигается заданное давление.

Предварительно установленное давление гидроаккумулятора обычно устанавливается на 90% от минимального рабочего давления. Это необходимо для максимального сжатия газа для сохранения энергии. Если заданное давление слишком низкое, гидроаккумулятор будет действовать медленно, и газ будет легко сжиматься и накапливать мало энергии. Если заданное давление слишком высокое, газ даже не начнет накапливать энергию, пока давление в системе не станет выше заданного давления.

Аккумулятор накапливает энергию каждый раз, когда давление в системе превышает давление предварительной зарядки.Хотя это может произойти во время рабочего цикла машины, схема предназначена для заполнения аккумулятора во время отсутствия запроса, когда поток насоса не распределяется между исполнительными механизмами. Давайте возьмем пример машины и скажем, что главный предохранительный клапан установлен на 3000 фунтов на квадратный дюйм, для работы машины требуется 2000 фунтов на квадратный дюйм, а гидроаккумулятор установлен на 1800 фунтов на квадратный дюйм.

Когда система включена, когда все регулирующие клапаны закрыты, насос (который способен выдерживать давление 3000 фунтов на квадратный дюйм) начинает работать, и при 1800 фунтах на квадратный дюйм на аккумуляторе это путь тока наименьшего сопротивления.Гидроаккумулятор будет принимать полный поток насоса до тех пор, пока давление не достигнет 3000 фунтов на квадратный дюйм, после чего он будет проходить через предохранительный клапан. Обычно между насосом и гидроаккумулятором имеется обратный клапан, чтобы гарантировать, что энергия остается в аккумуляторе и не пытается оттолкнуться через насос или через предохранительный клапан.

Часто предохранительный клапан оснащен функцией разгрузки, которая считывает давление на стороне гидроаккумулятора обратного клапана, что приводит к полному открытию предохранительного клапана для сброса потока насоса обратно в резервуар при низком давлении.Функция разгрузки также может быть электрической, когда реле давления открывает разгрузочный соленоидный клапан, или реле давления может быть запрограммировано на полное отключение двигателя насоса.

На этом этапе аккумулятор готов добавить свою накопленную энергию в систему, которая часто сочетается с потоком насоса для увеличения пиковой производительности, при этом размер насоса остается меньше. При работающем насосе и открытом направляющем клапане поток из гидроаккумулятора присоединяется к потоку насоса, обеспечивая высокий поток к исполнительному механизму (-ам), но только до тех пор, пока давление в гидроаккумуляторе 3000 фунтов на квадратный дюйм не достигнет давления в системе, в этот момент оно почти истощенный и больше не пополняющий поток, в данном случае 2000 фунтов на квадратный дюйм. Аккумулятор будет пополнять поток так быстро, как только сможет, на основе расчетов падения давления и расхода; аккумуляторы иногда дозируются, чтобы предотвратить слишком быстрое попадание избыточного потока в систему.

Краткое объяснение работы гидроаккумулятора: Подушка безопасности заполнена газом, гидравлическая жидкость выдавливается в пространство, занимаемое газом, газ пытается вытолкнуть гидравлическую жидкость, а открытие клапана ниже по потоку позволяет газу вытолкнуться. гидравлическая жидкость. Как я упоминал ранее, это делается для хранения энергии, компенсации утечки или уменьшения ударов или вибрации.

Энергия — это название игры, и в наши дни все, что нужно сделать для ее сохранения, считается первостепенным. На протяжении десятилетий в гидравлических системах использовались аккумуляторы для хранения энергии, хотя изначально это было сделано для того, чтобы «получить больше от меньшего». Поскольку небольшой насос можно использовать с аккумулятором для обеспечения высокого расхода в системах с более низким рабочим циклом, размер и стоимость насоса и первичного двигателя уменьшаются. При высоких затратах на энергию этот метод хранения энергии является экономичным и эффективным, особенно в системах, которые полностью отключают насос при низкой потребности.

Накопитель энергии не обязательно должен использоваться в непрерывном цикле, и иногда аккумуляторы используются для аварийной энергии во время отказа насоса или потери электроэнергии. Жидкость под давлением в гидроаккумуляторе может быть использована для открытия формы или перемещения машины в безопасное положение, где она может оставаться до восстановления питания или устранения неисправности.

Для использования в качестве компенсации утечки аккумулятор может работать в течение длительного периода времени. Например, функция зажима машины не требует работы гидравлической системы и потерь энергии при закрытии зажима.Аккумулятор может обеспечивать постоянное давление зажима, даже если поток медленно теряется из-за утечки через уплотнения поршня или зазоры регулирующих клапанов. Когда давление в гидроаккумуляторе упадет до критической точки, реле давления даст команду насосу включиться ровно столько, сколько потребуется для пополнения аккумулятора.

Из-за физических свойств гидравлической жидкости она легко передает удары и вибрацию через трубы, трубки и шланги системы. Некоторые насосы, например, создают импульсы давления, когда поршни или шестерни достигают своего выпускного отверстия.Добавив небольшой аккумулятор на выходе из насоса, сжатый газ может поглощать эти импульсы, так же как стойки подвески вашего автомобиля могут поглощать неровности на дороге, обеспечивая более плавную работу.

Иногда скачки давления бывают довольно большими, например, при декомпрессии большого баллона под высоким давлением, как обсуждалось ранее. Добавив гидроаккумулятор в обратную линию этих машин, можно поглотить декомпрессионный удар и предотвратить повреждение компонентов, расположенных ниже по потоку, которые в обратной линии часто не рассчитаны на высокое давление.

Хотя для каждого примера использования аккумулятора требуется собственное уникальное уравнение для решения критических параметров, таких как объем аккумулятора и давление предварительной зарядки, вам не нужны эти формулы, чтобы понять, как и где использовать аккумулятор. Но если вы не разбираетесь в математике, вам придется прибегнуть к услугам того, кто понимает это. Аккумуляторы просты в применении, но, как говорится, дьявол кроется в деталях.

Гидропневматический аккумулятор — HAWE Hydraulik

Флюидлексикон

#ABCDEFGHIJKLMNOPQRSTUVWZ

Ткань materialsFail safeFail безопасное обнаружение positionFailure rateFast excitationFatigue strengthFault detectionFault codeFault diagnosticsFeed вперед Система controlFeedbackFeedback signalFeedback для непрерывного регулируемого движения valvesFeed circuitFeed heightFeed о наличии cylinderFieldbusFiller filterFilling pressureFilterFilter cartridgeFilter characteristicsFilter classFilter кумулятивного efficiencyFilter грязи loadFilter dispositionFilter efficiencyFilter elementFilter для масла removalFilter в главной conduitFilter installationFilter lifeFilter poresFilter selectionFilter размер Поверхность фильтраТкань фильтраФильтр с байпасным клапаномФильтрацияЭффективность фильтрации в целом Конечное устройство контроля Точное управление потоком ФитингиУстановка с коническим кольцомУстановка с фрикционным кольцомФиксированный поршневой двигательФиксированное программное управлениеФиксированная дроссельная заслонкаФлагПламенистойкие гидравлические жидкостиФланцевое соединениеФильтр на фланцеФланцевое крепление-форсункаФильтр-трубкаФланцевое крепление-форсункаСистема финикового цилиндра ttingsПлоские уплотненияФлис-фильтрФлисовый материалФлип-флопГрафик расхода / давленияФункция расхода / сигналаКоэффициент расхода Kv (значение Kv) клапанаКоэффициент расхода αDКлапан регулирования расходаКлапан регулирования расхода, 3-ходовой клапан регулирования расходаСхема расходаПрерывно регулируемые клапаныДелитель расходаДеление потокаПотери силыПоток в зазорахПоток в трубопроводахМонитор расхода в трубопроводах Скорость потока, зависящая от скорости потери давленияРасход / характеристика давленияСкорость потока / характеристическая кривая сигнала Усиление скоростиАсимметрия скорости потока Разделение скорости потока Линейность скорости потока Процедура измерения скорости потока Процедура измерения скорости потока Пульсация скорости потока Диапазон требуемого потока Диапазон насыщения скорости потока Жесткость скорости потока Сопротивление потока Сопротивление потока фильтров Датчик потока с овальным ротором в сборе звукиПереключатель потокаПотоковые клапаны Скорость потока в трубопроводах и клапанахТрение жидкости Датчик уровня жидкости Механика жидкости Стандарты мощности жидкости Энергетические системы с магистральным трубопроводом Жидкости Жидкость Технология Промывка системы Промывочный блок питания Давление промывкиПромывной насосПромывочный клапан Тенденция к вспениванию Последующий регулирующий клапан Последующая ошибка скорости Последующее отслеживание Ошибка отслеживания Последующая ошибка Монтаж опоры Силовая временная диаграмма Сила: импульс, сигнал: импульс, сила, плотность, сила, обратная связь, усиление, измерение EoForce, коэффициент умножения силы, датчик силы, A Предисловие к онлайн-версии Fluke, v, Oikon + P bis Z «(технический глоссарий O + P» Гидравлическая технология от A до Z «) Эластичность формы Форма импульсов Прямой и обратный ходЧетырехходовой клапанЧетырехпозиционный клапанЧетырехквадрантный режим работы Рамочные условияЧастотный анализЧастотный фильтрПредел частотыЧастотная модуляцияЧастотная характеристикаЧастотная характеристика для заданного входаЧастотный спектрФрикционное движениеФункциональные потериФрикционные условия диаграмма

Компенсация радиального зазораРадиально-поршневые двигателиРадиально-поршневой насосРадиально-поршневой насос с внешними поршнямиПараллельный генераторДиапазон рабочего давленияРапсовое маслоБыстрый ходБыстрый ход контуров Скорость подъема давленияСоотношение площадей поршня αСила реакции на контрольной кромкеРеакционная передача Легко биоразлагаемые жидкости Контрольное время Референсное время удержания грязи Глушитель Регенеративный контур Регулятор Регулятор Регулятора с фиксированной уставкой Относительное колебание подачи δ Относительная амплитуда сигнала Съемный обратный клапан Давление сброса Сигнал отпускания Клапан сброса Дистанционное управление Повторная точность (воспроизводимость) Условия повторения ВоспроизводимостьПерепрограммируемое управлениеТребуемая степень фильтрацииПрофиль требованияРезультат измерения емкости резервуараОстаточное остаточное сопротивление NSE pressureResponse sensitivityResponse thresholdResponse время в cylinderResponse valueRest positionRetention rateReturn lineReturn линии filterReturn линии номер pressureReversal errorReversible гидростатическое motorReversing motorReversing pumpReynolds ReRigid лопасти machineRippleRise темп signalRise responseRise timeRodless cylinderRod sealingRoller leverRolling лопастного motorROMRoof-образной sealRotary amplifiersRotary потоком dividerRotary трубы jointRotary pistonRotary TRANSFER jointsRotary valveRotation Servo valveRound уплотнительные кольца Рабочие характеристики Постоянная времени разгона До

D-элемент Демпфированные собственные колебания Демпфированные собственные колебания Коэффициент демпфирования d Демпфирование D Демпфирующее устройство Демпфирование в цепи управления Демпфирующая сеть Демпфирование движения цилиндра Демпфирование клапанов Демпфирующее давление Демпфирующее уплотнениеКоэффициент трения Дарси λСкорость данныхСбор данныхИзмерительный усилитель постоянного токаСоленоид постоянного токаДеэмульгирующий элементСвободное время гидравлического удараСредняя компенсация объема гидравлической жидкостиСредняя временная зона компенсации демпфера жидкости клапанПоток подачиДетентДетергент / диспергент минеральные маслаПульсация потока подачиФункция плотности жидкостиДифференциальный датчик давления Дифференциальный датчик давления Дифференциальный датчик давления Дифференциальный датчик давления Дифференциальный датчик давления Дифференциальный датчик давления Дифференциальный датчик давления Дифференциальный датчик давления ryЦифровое управлениеТеория цифрового управленияЦифровое управление с удержанием сигналаЦифровые цилиндры (с несколькими положениями) Шаг цифрового вводаЦифровое управление клапанамиЦифровой измеряемый сигналЦифровой сбор измеренных значенийЦифровая процедура измеренияЦифровая измерительная техникаЦифровая системаЦифровая технологияЦифровая обработка сигналовЦифровые сигналыЦифровая системаЦифровая технологияЦифровой клапан (квантование) Клапаны прямого срабатывания 2-ходовые клапаны управления потоком Клапан управления потокомРаспределительный клапанНаправленный клапанНаправленный клапан, 3-ходовые клапаныНаправленные клапаны 2-ходовые клапаныГрязепоглощающая способность фильтраГрязеудерживающая способностьГрязеочистительДиск-седельный клапанДискретные контроллерыДискретные Диспергентные маслаДисперсионные машины с камерой смещенияКонтроль смещенияДиапазон смещенияДиапазон смещенияДиапазон смещенияДиапазон смещения эффект Цилиндр двойного действия Ручной насос двойного действия Двойное горловое уплотнениеДвойной насосВремя спада Поток Перетаскиваемый поток Давление потока Индикатор ДрейфПривод мощностьДрайверВремя отсасыванияДвойной контур управленияНасос двойной переменнойДвойной насосDurchflussverteilung (разделение потока) Коэффициент заполненияДинамические характеристики плавно регулируемых клапановДинамическое давлениеПринцип динамического давления для измерения расходаДинамическое уплотнение 9

TachogeneratorTandem cylinderTankTeach в programmingTechnical cyberneticsTelescopic connectionTelescopic cylinderTemperature компенсации при измерении измерений technologyTemperature driftTemperature в hydraulicsTemperature измерения deviceTemperature rangeTemperature responseTerminalTest benchTest conditionsTest pressureTest signalsThermodynamic measuringThermoplastic elastomersThermoplasticsThickened waterThin фольги elementThin фольги деформации gaugeThreaded вала sealThree камеры valveThree вход controllerThree положение valveThree этап сервопривода valveThresholdThrottleThrottle проверить valveThrottle formsThrottle valveThrottling pointThrough поршень стержень, шток-цилиндр, управление на основе времени, управление рабочим процессом на основе времени, непрерывный сигнал, управляющие сигналы, зависящие от времени, постоянная времени, дискретный, таймер, элемент времени, контроль времени, допуск на скачкообразную реакцию агрегата, предел максимального давления, усилитель крутящего момента, электрогидравлический, характеристика момента, ограничение момента, измерение момента, измерение крутящего момента, электродвигатель, мультипликатор момента nОбщая эффективностьОбщее давлениеПередаточный элементПередаточный коэффициентПередаточная функцияФункция переноса системы φСигнал передачиПереходный откликПереходная частьЭффективность передачиМетод передачиДавление передачиПередаточное отношениеСкорость передачиТехнология передачиТрансмиттер (единичный преобразователь) Транспортное движение цилиндраТрибологияСигнал триггера — Двухточечный фильтр — Двухточечный регулятор давления — Двухпозиционный регулятор — Двухпозиционный регулятор давления Квадрантный режимДвухступенчатое управлениеДвухступенчатый сервоклапанТипы тренияТипы движения цилиндровТипы крепления цилиндров

Фланец

SAEСхема безопасностиСхемы управления безопасностьюЗадвижка безопасностиЗадвижка безопасностиДВЗадерживающая заслонкаПравила безопасностиРиск безопасностиПредохранительный клапанПробоотборникБлок отбора проб и удержанияСхема управления пробойКонтроллер отбора пробОшибка выборкиКонтроль обратной связи по образцуЧастота отбора пробВремя отбора пробПереносные элементы для отбора пробКонтактный фильтр-шнекКлапаны для шнекаОчищение ) Уплотняющий элемент Уплотняющее трение Уплотнительный зазор Уплотнительный край Уплотнительный поршень Уплотнительный профиль Уплотнительный набор Уплотнительная система Утечка уплотнения Предварительная нагрузка уплотнения Уплотнения Износ уплотненияСедельный клапанВторичная регулировка гидростатических трансмиссийВторичные меры (в случае шума) Вторичное давлениеСегментный компенсатор давленияСамоконтроль системСамовсасывающий насосСамостоятельная регулировка датчика положения регуляторов напряженияСинхронизирующая память регуляторов температуры мера йти во время deviceSensitivity гидравлических устройств dirtSensorSensor для управления фактического valuesSensor systemSensor technologySensor valveSeparate цепи hydraulicSeparation capabilitySeparatorSequence controlSequence из actuatorsSequence diagramSequence из measurementsSequentialSerialSeries-производства cylinderSeries circuitSeries connectionSeries соединения characteristicServo всасывания valveServo actuatorsServo cylinderServo driveServo гидравлического systemServo motorServo pumpServo technologyServo valveSet геометрической displacementSet действующего conditionsSetpointSetpoint generationSetpoint generatorSetpoint processingSet давление pe Точка настройкиУстановка импульсаПроцесс настройкиВремя настройкиВремя настройки давленияВремя настройки T gНагрузка на вал в поршневой машинеСтабильность сдвига гидравлической жидкостиУдарная волнаТвердость берегаКороткоходовой цилиндрОтключающий блокЗапорный клапанКлапан-заслонкаСигналСигнал Длительность сигнала Формы выходного сигнала Формы сигнала Генератор сигнала elementSignal parameterSignal pathSignal processingSignal processorSignal selectorSignal stateSignal Переключаемый сигнал technologySignal transducerSilencerSiltingSingle действующего контроль cylinderSingle цепь systemSingle для управления с обратной связью controlSingle actuatorSingle краем circuitsSingle или отдельным приводом для станкиОдноцелевых квадранте operationSingle resistorSingle стадии серво valvesSintered металла filterSinus responseSI unitsSix-ходового valveSlave поршня principleSliderSliding frictionSliding gapSliding кольцо sealSlipperSlotted скорости близости switchesSlow двигатель с высоким крутящим моментомМалый диапазон сигналаСглаживание сигналаСоленоидСрабатывание соленоида Растворимость газа в гидравлической жидкостиЗвук в воздухеЗвук в жидкостиЗвуковое давление pИсточники погрешности в измерительных приборахСпециальный цилиндрСпециальный шестеренчатый насосСпециальный импедансСкоростная характеристика гидравлических двигателейСхема управления скоростью Измерение скоростиДиапазон уплотненияКвадратное передаточное отношениеСферический конус цилиндрической формы Напряжение сжатия в уплотнениях Стабилизированные гидравлические масла Анализ устойчивости Критерии устойчивости Стабильность гидравлической жидкости Поэтапное регулирование часов Поэтапный насос Поэтапный переключатель двигателяСтандартный цилиндрСтандартное отклонение измерения Давление в режиме ожидания Время запуска Пусковая характеристика Пусковая характеристика гидравлических двигателей Пусковое положение; Основная positionStarting torqueStart pressureStartup discontinuityStartup ProcessStart viscosityState controllerState diagramState equationsStatement listStatement listState variableStatic behaviourStatic параметры плавной регулировкой valvesStatic sealStationary flowStationary hydraulicsStationary stateStatus monitorsSteady stateStep управления actionStep Диаграмма controlStep functionStepper motorStepper двигателя управлением пропорционального направленного valveStick slipStiction от sealsStiffness из actuatorsStiffness гидравлического fluidStraight трубы fittingStrain gaugeStress relaxationStretch -загрузка уплотненийСальниковая коробкаПодсхема Погружной двигательПодчиненный контур управленияВсасывающая характеристикаВасосная фильтрацияВасосная линияВсасывающая линияДавление всасыванияРегулирование давления всасыванияУрегулирование всасывающей дроссельной заслонкиВсасывающий клапанКонтроллер суммарной мощности Суммарное давлениеПодача блока управленияДавление подачиСостояние подачи гидравлической жидкостиПоверхностное кольцоПоверхностный фильтрПоверхностное отклонениеПоверхность пластинчатый автоматПодмывной пластинчатый насосНабухание герметиковДавление выключенияВключение характеристики соленоидаВремя включенияВключениеПоведение переключения устройствКлючающая способность гидрораспределителейКоммутационные характеристикиЦикл переключенияПереключающий элементМетоды переключения (электрические) Способы переключения для гидравлических насосовКонтроль переключаемой мощности Переключаемое положение переключаемого давления в случае переключающих клапанов (гистерезис) Удар при переключении Символы переключения Время переключения Поворотный двигатель Винтовой фитингСимволы Синхронизирующий цилиндр Синхронное управлениеСинхронный датчик положенияСистемный сигналСистемный заказСистемное давление

Обратное давлениеКлапан обратного давленияЗаднее кольцоШариковый клапанПроход полосыБанковый клапан в сборе (моноблок) БарБарометрическая обратная связьСреднее уплотнение барьераBasicBaudСила изгиба осей БернуллиУравнение БернуллиБета-значение (значение β) ДвоичныеДвоичные символыДвоичный элемент схемыДвоичный кодДвоичный контрольДвоичный счетчикДвоичный клапан Обработка двоичных сигналов (двоичный сигнал с плавающей запятой) Выпускной фильтрСпускной фильтрСпускной клапан (Hy), выпускной клапан (PN) Блок-схема Блокировочное положениеБлок штабелирования в сбореВоздушный эффектДавление продувкиДувание мимо поршневых уплотненийСхема компонентовГрафическая диаграмма (частотные характеристики) График сцепленияНижний конец цилиндраБез отскокаТрубка Бурдона Тормозной клапан Точка разветвленияТочка отрываФильтр отрываТрение отталкивания расстояние до направления потока жидкости Встроенная грязь Объемный модуль Давление разрыва Автобусная система БайпасБайпасное устройствоБайпасная фильтрацияБайпасный клапан

Магнитный filterMain valveMale fittingManual adjustmentManual modeMaterials для обработки данных sealsMeasured signalMeasured valueMeasured variableMeasurement данных processingMeasurement (кондиционирование) Измерение uncertaintyMeasuringMeasuring accuracyMeasuring amplifierMeasuring усилитель с несущей процедуры frequencyMeasuring chainMeasuring converterMeasuring deviceMeasuring errorMeasuring instrumentsMeasuring (системы) Измерение rangeMeasuring дроссельной заслонки (калиброванное отверстие) Измерение turbineMechanical actuationMechanical dampingMechanical feedbackMechanical impedanceMechanical lossesMedium Диапазон давлений Емкость памяти Цепи памятиМеталлические уплотненияМетрический контрольСпособы установки клапанаДвигатель MH (станок с изогнутой осью) МикроэмульсияМикрофильтрМикрогидравликаМинеральные маслаМини-измерительное устройство (для работы в режиме онлайн) Минимальный расход управленияМинимальное поперечное сечение для регулирования расходаМинимальное давлениеМинор контурМодульная система управленияМинутная система управления designModula r проектирование систем управленияМодульная системаМодуляцияМодульМониторингСистемы мониторингаСистемы мониторинга гидравлической жидкостиМоностабильное управление засаживаниемСхема движенияУправление двигателем (замкнутая петля) Управление двигателем (разомкнутая петля) Проскальзывание двигателяЖесткость двигателяМонтажные размеры (схемы отверстий) Монтажная плитаМонтажная стенкаСистема с подвижным змеевикомМногоконтурная система насосМногоконтурная система Функциональный клапан Многоконтурные схемы управления с обратной связью Мультимедийный разъем Многопозиционный контроллер Многоступенчатый гидростатический двигатель Многопозиционный двигатель Многопроходный тест Многонасосный двигатель Двигатель МЗ (машина с наклонной шайбой)

А / Ц converterAbrasion resistanceAbsolute цифровой измерительный systemAbsolute фильтрации ratingAbsolute измерения systemAbsolute pressureAbsolute давление gaugeAbsolute давления transducerAcceleration feedbackAcceleration measurementAccess timeAccumulatorAccumulator, hydraulicAccumulator зарядки расход valveAccumulator тест diagramAccumulator driveAccumulator lossesAccumulator regulationsAccumulator sizeACFTD dustAcoustic расцепления measuresAcoustic impedanceAC solenoidAction методов множественного resistanceActive sensorActual pressureActual valueActuated timeActuating для valvesActuationActuation elementActuatorAdaptationAdaptive controlAdaptive controllerAddition pointAdditiveAdditive (для смазочных материалов) Адрес Адгезионные режимы Адгезионные свойства гидравлических жидкостей Адгезионное соединение труб Регулируемый поршневой насос Регулируемый дроссель Регулировка поршневых машин Время регулировки Допуск Старение гидравлических жидкостей Старение уплотнений Воздухоочиститель Fine Test Dust (ACFTD) Расход воздухаAi г в стоимостном выражении oilAlgorithmAlphanumericAlphanumeric codingAlphanumeric displayAlpha из filtersAmplifierAmplifier cardAmplitude marginAmplitude modulationAmplitude plotAmplitude ratioAmplitude responseAnalogueAnalogue computerAnalogue controlAnalogue controllerAnalogue данные acquisitionAnalogue измеряется valuesAnalogue измерения procedureAnalogue измерения положения technologyAnalogue measurementAnalogue signalAnalogue сигнал processingAnalogue technologyAngle encoderAngle measurementAngular угловой частоты ω EAnharmonic oscillationAnnular область А RAnnular шестеренчатого насоса / motorAnti-вращение элемента для cylindersApparent грязеемкостьАрифметический логический блокСреднее арифметическое, среднее ASCIIASICАсинхронное управлениеПерепад атмосферного давленияАвтоматическое переключение цилиндровАвтоматическое управлениеАвтоматическое обнаружение неисправностейАвтоматическое включение шестеренчатые насосы (так называемая компенсация зазора) аксиально-поршневой станок аксиально-поршневой двигатель аксиально-поршневой насос

I-блок (в системах управления) I-контроллер Идентификация системы Клапан холостого хода Потери на холостом ходу Давление холостого хода IEC Устойчивость к помехам Импеданс Z Импеллер Подаваемый поток Подавленное давление Импульсное срабатывание клапанов Импульсный дозирующий лубрикатор Импульсный шум Импульсное сопротивление энкодеров Импульсный датчик положения Импульсный датчик положения Цифровое измерение угла наклона Импульсная модуляция угла наклона ) Повышение точности индексации с делителями потока Индексирование соотношений при использовании делителей потока Точность индикации Диапазон индикации Индикатор Непрямое срабатывание Методы косвенного измерения Индивидуальный компенсатор давления Индуктивное давление Индуктивное измерение положения Индуктивные датчики давленияНадувные уплотненияВлияние на время переключения Индуктивные датчики давленияВходной перепад давления Начальный перепад давления Начальный перепад давления сигнал Входной сигнал Неустойчивость системы управления Мгновенные рабочие условия Инструкция Характеристики впуска Высота всасывания Интегрированная гидростатическая трансмиссия Интегрированная схема (IC) Интегрированное управление Интегрированная электроника Интегрированные системы измерения положенияКонтроллер интерференцииВзаимодействие с прерывистым режимомВнутреннее управление с обратной связьюВнутренний впуск жидкостиВнутренний шестеренчатый насосВнутренняя утечкаВнутреннее безопасное управление давлением 9Внутренняя поддержка давления

Фильтр сверхтонкой очисткиУльтразвуковое измерение положения Сигнал компенсации зазора Пониженное давление Нестабильный Разгрузочный клапан Полезный объем Коэффициент полезного действия

EDEEPROM (электронно стираемое программируемое постоянное запоминающее устройство) КПД Эффективность трубыЭластичность жидкостей под давлениемЭластичные материалыУстройства для измерения давления на эластичной трубе (типа Бурдона) Уплотнение из эластомера / пластика под напряжениемЭластомерыКонкурентная арматураЭлектро-гидравлическая аналогияЭлектрическое срабатываниеЭлектрическое управление мощностью обработки сигнала или сила электрического сигналаЭлектрическая обратная связь приводЭлектрогидравлическая технология управленияЭлектрогидравлический линейный усилительЭлектрогидравлическая системаЭлектрогидравлические системыЭлектромеханические преобразователи сигналовЭлектроуправлениеЭлектрогидравлический усилитель крутящего моментаЭлектромагнитная совместимостьЭлектромеханическое управление перемещением насосов / двигателейЭлектронный фильтрЭлектронное распределение потокаЭлектронная обработка сигналовЭлемент для напорных фильтровЭлектромеханическое преобразование энергии sses в гидравликеЭнергосбережение в гидравликеМоторное масло в качестве гидравлической жидкостиEPROMEэквивалентный объемный модульЭквивалентная схемаЭквивалентная постоянная времениЭрозионный износОшибкаОшибкоустойчивый компьютерКлассификация ошибки в измеренияхКривая ошибки измерительных приборовПределы ошибки измерительного прибораПороговое значение ошибкиСигнал ошибкиОшибка допуска ошибки в датчике неисправностиДиапазон ошибок Клапаны Внешнее деление мощности Внешняя опора

Управление обратной связью p / QБумажный фильтрПарафиновое базовое маслоПараллельная цепь / подключенные параллельноПараллельное соединениеПараллельная обработкаПараметрыФильтрация частичного потокаЭрозия струи частицРазмер частицыПассивный датчикКонтроллерPDPD elementP elementP elementPerformance / weight ratioPerformance mapPD elementP elementP elementPerformance / weight ratioPerformance mapPeriod patternPhase-frequency responsePhosespessection valvePhase-act Управляемое поведениеПилотный расходПилотная линияПилотные клапаныПилотная ступень для плавно регулируемых клапановПилотный клапанШпиндельный клапанТрубопровод в сбореПропускная способность трубыПолное сопротивление трубы Индуктивность трубыЗащита трубы от разрываТрубные винтовые соединенияТрубопроводПоршеньПоршень для быстрого ходаПоршневые машиныПоршневой двигательПоршневой манометрПоршневой насос-трубка поршневой уплотнитель подключение Вставной клапан Вставной клапан, 2-ходовой вставной клапан Вставной клапан, 3-ходовой вставной клапан Вставной усилитель Плунжер Контур поршня для быстрого продвижения Поршень поршня Управление точкойПолиацеталь (POM) Полиамид (PA) Полимерные материалы Политетрафторэтилен (PTFE) Полиуретан (AU, EU ) Порт Поперечное сечение портаЗависимые от положения сигналы управленияПроцесс блокировки в зависимости от положенияПозиция / временная диаграмма Диаграмма положенияОшибка положенияОбратная связь по положениюОшибка позиционированияОшибка позиционированияИзмерение положенияИзмерение положения с помощью потенциометраПроцесс измерения положенияДатчики положенияПоложительно-импульсное управлениеПринцип положительного смещенияПостолечение, избыточное напряжениеТочка перегибаХарактеристики мощности График характеристик мощностиКонтроллер мощностиПлотность мощности потериПотери мощностиСиловой агрегатСиловая частьРазделение мощностиПередача мощностиПредварительный резервуарПредзаправленный масляный бакПредварительная заправка уплотненийКлапан предварительной заправкиПредварительный фильтр рабочая часть (заданная точка разрыва) Предварительный нагреватель Давление Давление-расход (pQ) в насосе Характеристика давления-расхода (p / Q) Клапан ограничения давления Электромагнитный клапан с защитой от давления Редукционный клапан (клапан регулирования давления) Редукционный клапан, 3-ходовой Редукционный клапан Функция сигнала давления Диаграмма давления / расхода Срабатывание давления Изменение давления Процесс чередования давления в машинах прямого вытеснения Усилитель давления Центрирование давления на направляющих клапанах Камера давления Компенсатор давления Регулирование давления Характеристика регулирования давления Контур управления давлением Контур управления давлением для переменного насоса Перепад давления Падение давления График перепада-расхода для клапанов Обратная связь по давлению Фильтр давления Поток давления Дроссельная характеристика клапана Формы Колебания давления Жидкость под давлением Прирост давления на плавно регулируемых клапанах Манометр Переключатель выбора манометра Градиент давления Напор давления Независимое от давления регулирование расхода Индикация давления Ограничение давления Падение давления Потери давления из-за дросселей Процедуры измерения давления Колебания давления Пик давления Диапазон позиционирования давления Колебания, вызванные пульсацией давления Пульсации давления Диапазоны давления в гидравлической технологии Номинальные значения давления Степень давления Клапан перепада давления Регулятор давления (регулятор нулевого хода) Повышение давления Датчик скачка давления Переключение давления Переключение давления Клапаны подачи давления с регулируемым давлением Клапан Волна давления Первичное срабатывание Первичное и вторичное управление Первичное управление Первичное управление шумом Первичное давление Первичный клапан Печатная плата Приоритетный клапан Управление рабочим процессом, зависящее от процесса Глубина обработки Обработка фактических значений (или сигналов) Профиль загрязнения Программа Носитель программы (память, носитель) Последовательность выполнения программы Блок-схема программыПрограммная библиотекаПрограммный логический контроллер (Программируемый логический контроллер) Программируемый логический контроллер управлениеПрограммированиеЯзыки программированияМетоды программированияСистема программированияПрограммный модульПРОМРаспространение ошибкиПропорциональный усилительПропорциональная технология управленияПропорциональный соленоидПропорциональные клапаныЗащитные фильтрыКонтактный переключательPSIPT1 — КонтроллерPT1 — элементPT2 — КонтроллерPT2 — элементИмпульсная кодовая модуляцияИмпульсная модуляция длительности импульса (импульсная модуляция) Привод Широтно-импульсная модуляция для ускоренного хода Насос клапан циркуляции холостого хода Насос с установленными в ряд поршни / рядный поршневой насос

Рассчитано pressureCalculating множественного доступа звук powerCalibrating throttlesCamCAN-BUSCapacitive положения measurementCapillary tubeCarrier смысла с обнаружением столкновений (CSMA / CD) Каскадированный (многоканальный контур) управления systemCascaded controlCavitationCavitation erosionCentralised гидравлического маслом supplyCentralised hydraulicsCentre positionCentrifugal pumpCentring по springsCETOPCharacteristic curveCharacteristic с усредненной hysteresisCharge amplifierCharge pumpCheck valveChipChlorinated hydrocarbonsChopperChurning lossesCircuit diagramCircuit схемаСхема технологииКруглый уплотнительный зазорИндекс циркуляции UПотери циркуляции в гидравлических системахКруговое перемещение машины Давление зажимаКласс точностиУровень чистотыКлиматическое сопротивлениеСигнал блокировкиКонтроль засорения отверстийСистема с замкнутым центромЗамкнутый контурСистема управления положением в замкнутом контуреЗакрытый контур управленияЗамкнутый контур управления замкнутым циклом Индекс derCode translatorCodingCoil impedanceCold flowCollapse pressureCollective lineCombined actuationCombined pistonCompact sealComparabilityCompatibility для elastomersCompressibilityCompressibility factorCompression энергии EKCompression setCompression объема ΔVKComputer controlsComputerised числового программного управления (ЧПУ) ConcentratesConditions из comparisonCone valveConfigureConical pistonConstant (фиксированный) throttleConstant расхода соотношения gaugeContact давления systemConstant Контакта насос controlsContact systemConstant сила давления characteristicConstant т pContact sealsContamination classContamination в operationContamination Измерение Загрязнение гидравлической жидкости Непрерывно регулируемый клапан потока Непрерывно регулируемый клапан давления Непрерывно регулируемые клапаны Непрерывные рабочие условия Непрерывное давление Постоянное значение Контроль Алгоритм управления Управляющий усилитель Блок управления (блок клапанов) Карта управления Управляющая характеристика Управляющая команда Управляющий компьютер Концепция управления в жидкости t технологияЦилиндр управления Отклонение управленияУстройства управления Диаграмма управленияРазница управленияГеометрия кромок клапанов Управляющая электроникаОборудование управленияОшибка управленияРасход управленияРасход управленияКонтроль в диапазоне мощностиКонтролируемая подсистемаКонтроллерКонцепции контроллераКонтроллер для демпфирования (фильтр верхних частот) Входная переменная контроллера y Переменная на выходе RC-контроллера y Настройки контроллера с задержкой контроллера (Контроллерная область) поток сигнала) Память управленияМотор управленияКолебания управленияПанель управленияПараметры управленияПластина управленияМощность управленияДавление управленияПрограмма управленияСвойства управленияДиапазон управленияЭлектромагнитный клапан управленияПружины управленияСтруктура управленияКонтроль площади поверхностиПереключатель управленияТехника управленияДроссельная заслонкаБлок управленияПеременная управленияГромкость управления для клапановКонтроль со сменным ПЗУКонтроль с дроссельной заслонкойКоулер Корректирующая скорость Корректирующая переменная Корректировка характеристик Стоимость гидравлической силовой установки Противоточное охлаждение Покрывающая пластина Медленная подача (скорость) Медленное движениеПотеря давления, зависящая от поперечного сечения Система с питанием от тока Индикатор тока Фитинг с врезным кольцомЦиклЧастота циклаЦилиндрКпд цилиндра

Закон Хагена-Пуазейля Половина разомкнутого гидравлического контура Датчик эффекта холла Расстояние заклинивания dРучной насос Жестко-проводное управление (VPS) Твердость материалов для уплотнений Тепловой баланс в гидравлических системах Жидкости HFB Жидкости HFC под давлением Жидкости HFDИерархическая схема управленияВысокочастотный фильтр (фильтр) Фильтр высокого давленияПропорциональный клапан с высоким крутящим моментом Высокоскоростные двигатели выпускной клапан motorsHigh Water Based Fluids (HWBF)
HL oilsHLPD oilsHLP oilsHolding currentHolding elementHole patternsHose assembliesHose lineHosesHose stretchingHumHVLP oilsHybrid accumulatorHydraulic accumulatorHydraulic actuationHydraulic axisHydraulic braking cylinderHydraulic bridge circuitHydraulic bridge rectifierHydraulic capacity C hHydraulic consumerHydraulic cylinderHydraulic damping (of servomotors)Hydraulic drive systemsHydraulic efficiencyHydraulic fluidsHydraulic half bridgesHydraulic inductance L hHydraulic intensifierHydraulic motorHydraulic motors subject to secondary controlHydraulic piloting stageHydraulic p ower packHydraulic power packHydraulic pumpHydraulic resonance frequencyHydraulicsHydraulic sealsHydraulic shockHydraulic signal technologyHydraulic spring constantHydro-mechanical closed loop controlHydro-mechanical signal converterHydro-mechanical systemHydrokineticsHydromechanical efficiencyHydropneumatic accumulatorHydrostatic bearingHydrostatic driveHydrostatic energyHydrostatic lawsHydrostatic machinesHydrostatic power P hHydrostatic reliefHydrostatic resistanceHydrostaticsHydrostatic servo driveHydrostatic traction driveHydrostatic transmissionHydrostatic transmission with separated primary/secondaryHysteresis

O-ring sealOil-in-water emulsionOil coolerOil hydraulicsOil samplingOil separatorOn-off controlOn-stroke time of a pumpOnboard-ElektronikOne-way tripOpen-centre positionOpen-centre pump controlOpen centre systemOpen circuitOpen control circuitOpened control circuitOpening/closing pressure differenceOpening pressureOpen loopOpen loop control systemOpen loop synchronisation controlOperating characteristicsOperating conditionsOperating cycle frequencyOperating defectOperating life of a filterOperating loadsOperating manualOperating mode of a controlOperating modes of drivesOperating parametersOperating pointOperating pressureOperating safetyOperating systemOperating viscosityOperational amplifierOperation pressureOptical fibre technologyOptimising the controllerOrbit motorOrificeOscillationsOscilloscopeOutlet pressureOutput deviceOutput moduleOutput unitOutput volumeOver-excitationOverall control unitOverlap in valvesOverload protectionOverpressureOverrunOvershootOvershoot time 9000 6

Waiting periodWater glycol solutionWater hydraulicsWater in oilWater in oil emulsionWear protection capacityWelded nipple fittingWetting abilityWheel motorWordWord lengthWord processorWorking cycleWorking linesWorking positions

Labyrinth gap sealLabyrinth sealLaminar flowLaminar flow resistorLANLaplace transformationLarge signal rangeLaw of superpositionLeakage, leakLeakage compensationLeakage lineLifetimeLimiting conditionsLimit load controlLimit monitorLimit pick upLimit signalLimit switchLinearLinear control signalLinear control theoryLinearisationLinearityLinearity errorLinear motorLinear regulatorsLine filterLip sealLoad-holding valveLoad collectiveLoad flow Q LLoading models for cylindersLoad pressure compensationLoad pressure differenceLoad pressure feedbackLoad pressure p LLoad sensing systemLoad stiffnessLocking cylindersLogic controlLogic diagramLogic elementLoop gain V KLoop lineLosses in displacement machinesLow-pressure pumpLowering brake valveLow pass filterLow pressure

Naphta based oilNatural angular frequency ω eNatural angular frequency ω oNatural dampingNatural frequencyNatural frequency foNatural frequency of a hydraulic cylinderNBRNeedle-type throttleNegative-pulse controlNeutralisation numberNeutral positionNeutral position of the pumpNewtonian fluidNoiseNoise levelNoise level (A-weighted) L pANoise level additionNoise level L pNoise level L WNoise level WNoise measurementNominal flow rateNominal force of a cylinderNominal mode of operationNominal mode of operationNominal operating conditionsNominal powerNominal pressureNominal sizeNominal valve sizesNominal viscosityNominal widthNon-contact sealsNon-linear control systemNon-linearityNon-linear signal transmitterNormally closed (NC) valveNormally open valveNormal pressureNozzleNull-adjustment signalNull biasNull bias adjustmentNull driftNull range of a proportional spool valveNull shift stability

Value discreteValveValve-controlled pumpsValve actuationValve assembly systemsValve blockValve block designValve control spoolValve control with four edgesValve dynamicsValve efficiencyValve noisesValve operating characteristicsValve plate-controlled pumpsValve polarityValve pressure differenceValve sealsValve with flat sliderVane pumpVariable area principleVariable delivery flow (control)Variable pumpVariable pump, variable motorVariable throttleVelocity amplificationVelocity controlVelocity errorVelocity feedback control circuitVelocity feedback loopVelocity measurementVelocity of sound pressure wavesVertical column pressure gaugeVertical stacking assemblyVibration fatigue limit of a systemViscosityViscosityViscosity/pressure characteristicViscosity/temperature characteristicViscosity classesViscosity index (VI)Viscosity index correctorViscosity rangeVisual display of contaminationVoltage tolerance for solenoid valvesVolume (bulk) filtersVolumetric efficiencyVolumetric losses 9 0006

5-chamber valve5-way valve

Gap bridgingGap extrusionGap filterGap flowGap sealsGas filling pressureGauge protection valveGeared pump/motorGear pumpGear pump flow meterGerotor motorGraduated glass scaleGrooved ring sealGroup signal line

Kinematical viscosity vKv factor (speed/stroke gain)Kv value (of valves)

Quad-ringQuantisationQuantisation errorQuasistaticQuick connector couplingQuiescent flow

Zero overlap

Jet contractionJet pipe amplifier

The deep water gas charged accumulator and its possible replacements

Abstract

Blowout preventers are designed to shut in a well under pressure so that formation fluids that have moved into the wellbore can be contained and circulated out while continuous control of the well is maintained. Системы управления противовыбросовыми превенторами крайне необходимы. эффективные гидравлические системы. Цель состоит в том, чтобы управлять такими функциями, как закрывающие цилиндры, в стеке противовыбросового превентора в кратчайшие сроки. Подача достаточного объема давления гидравлическая жидкость для работы этих аварийных функций необходима. Иметь необходимое количество управляющей жидкости под давлением требует хранения этой жидкости в аккумуляторах. Эти аккумуляторы работают за счет расширения и сжатия газообразного азота, который отделяется от гидравлической жидкости резиновыми баллонами или поршнями.Аккумуляторы используются как на поверхности, так и на морском дне. Пока вы используете аккумуляторы на поверхности или на относительно мелководье, у вас может не быть проблем с объемом гидравлической жидкости емкостью газовых аккумуляторов. Проблема может возникнуть, когда устье скважины находится на глубине более 3500 футов. На большой глубине во время бурения гидроаккумуляторы следует разместить на блоке подводных противовыбросовых превенторов, чтобы уменьшить время отклика гидравлики и обеспечить питание гидравлической системы в случае прерывание наземной связи. Аккумуляторы также используются в подводной добыче. системы управления для обеспечения локального хранилища, позволяющего контролировать меньшие размеры линий пуповины. Емкость гидроаккумулятора падает до 15% от его емкости на на поверхности и даже меньше, в зависимости от глубины воды. Большое количество аккумуляторы необходимы для выполнения функций BOP, которые могли быть выполнены простым немного из них на поверхности или на относительно небольшой глубине воды. Газ внутри газовых аккумуляторов не ведет себя как идеальный газ, поскольку мы глубокая вода из-за высокого гидростатического давления на этой глубине.Чем выше окружающий давление, тем больше газ ведет себя как настоящий газ, а не как идеальный, и тем ниже емкость гидроаккумуляторов. Сжатый газ содержит энергию и может выделять эта энергия в нужное время, поэтому она используется в аккумуляторах. Теперь мы должны ищите что-то, что способно накапливать энергию, но в отличие от азота, его функциональность не должны подвергаться воздействию возрастающего гидростатического давления воды в зависимости от глубина воды. Пружины и тяжеловесы будут рассмотрены как два варианта замены азот в аккумуляторах.Эффективные глубоководные гидроаккумуляторы уменьшат количество аккумуляторы, необходимые для глубоководных работ, снижают стоимость проекта. С появлением таких эффективных аккумуляторов, можно надеяться, что одна из многочисленных проблем Глубоководное бурение решено, и мы можем думать о бурении еще более глубоких вод.

Мир Раджаби, Мехди (2004). Аккумулятор глубоководный, заряженный газом, и его возможные замены. Магистерская работа, Техасский университет A&M. Техасский университет A&M. Доступно в электронном виде по адресу http: / / hdl.ручка .net / 1969 .1 / 3346. .

alexxlab

Related Posts

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *